Deploying Apache Superset at Scale: Production-Ready BI Platform with AWS CDK and ECS Fargate

Deploying Apache Superset, the modern open-source business intelligence platform, requires careful architectural planning to handle enterprise-scale workloads. While Superset is powerful out of the box, production deployments demand high availability, horizontal scalability, and robust data persistence. This post explores building a production-ready Superset platform using ECS Fargate, RDS PostgreSQL, and AWS CDK.

The Challenge: Enterprise-Grade BI Infrastructure

Running Apache Superset in production environments presents unique challenges that go beyond simple container deployment:

  • High Availability: Analytics platforms must remain accessible 24/7 for business-critical dashboards
  • Scalability: Multiple concurrent users running complex queries require horizontal scaling
  • Data Persistence: Metadata, user configurations, and saved dashboards need reliable storage
  • Performance: Query execution and dashboard rendering must be responsive under load
  • Security: Enterprise data requires encryption in transit and at rest, role-based access control
  • Multi-Tenancy: Support for multiple teams with isolated workspaces and permissions
  • Operational Complexity: Container orchestration, database management, and load balancing coordination

Why ECS Fargate + RDS for Superset?

Before diving into implementation, let’s understand why this architecture excels for production BI workloads:

ECS Fargate: Serverless Container Orchestration

Fargate provides the perfect foundation for stateless Superset application servers:

Traditional EC2 ApproachECS Fargate Approach
Manage EC2 instances and capacityServerless container execution
Manual scaling configurationAuto-scaling based on metrics
Static resource allocationDynamic resource provisioning
OS patching and maintenanceAWS-managed container runtime
Complex multi-AZ setupBuilt-in high availability

Key Advantages:

  • No infrastructure management: Focus on application configuration, not server operations
  • Automatic load distribution: ECS distributes tasks across availability zones
  • Resource efficiency: Pay only for actual CPU and memory consumption
  • Seamless scaling: Add or remove capacity based on real-time demand
  • Container health management: Automatic replacement of unhealthy tasks

RDS PostgreSQL: Managed Database for Metadata

Apache Superset uses a relational database to store critical metadata:

Superset Metadata Storage Requirements:
┌──────────────────────────────────────────┐
│ • User accounts and authentication       │
│ • Dashboard definitions and layouts      │
│ • Chart configurations and SQL queries   │
│ • Database connection credentials        │
│ • User permissions and RBAC rules        │
│ • Query result caching                   │
│ • Activity logs and audit trails         │
└──────────────────────────────────────────┘

RDS Benefits:

CapabilityImpact
Multi-AZ DeploymentAutomatic failover for 99.95% availability
Automated BackupsPoint-in-time recovery up to 35 days
Read ReplicasScale read-heavy workloads horizontally
Performance InsightsDatabase query optimization and monitoring
EncryptionAt-rest and in-transit data protection

Application Load Balancer: Intelligent Traffic Distribution

ALB provides Layer 7 load balancing with advanced features:

  • HTTPS Termination: SSL/TLS certificate management with ACM integration
  • Path-Based Routing: Route different URL patterns to specific services
  • Health Checks: Automatic removal of unhealthy Superset instances
  • WebSocket Support: Critical for real-time dashboard updates
  • Sticky Sessions: Maintain user session affinity when needed

Architecture Overview

Our production Superset deployment uses a multi-tier, highly available architecture designed for enterprise scale:

┌─────────────────────────────────────────────────────────────────┐
│                        INTERNET TRAFFIC                         │
│                    (End Users & Data Teams)                     │
└──────────────────────────┬──────────────────────────────────────┘
                           │
                           ▼
┌─────────────────────────────────────────────────────────────────┐
│                         ROUTE 53                                │
│                     DNS Management                              │
│                                                                 │
│  • Custom Domain: analytics.company.com                         │
│  • Health Checks & Failover                                     │
│  • Latency-Based Routing (Multi-Region)                         │
└──────────────────────────┬──────────────────────────────────────┘
                           │
                           ▼
┌─────────────────────────────────────────────────────────────────┐
│              APPLICATION LOAD BALANCER (ALB)                    │
│                        Multi-AZ                                 │
│                                                                 │
│  ┌─────────────┐  ┌─────────────┐  ┌──────────────────────┐    │
│  │   HTTPS     │  │   Health    │  │  Connection          │    │
│  │ Termination │  │   Checks    │  │  Draining            │    │
│  │  (ACM Cert) │  │             │  │                      │    │
│  └─────────────┘  └─────────────┘  └──────────────────────┘    │
└──────────────────────────┬──────────────────────────────────────┘
                           │
                           ▼
┌─────────────────────────────────────────────────────────────────┐
│                      VPC NETWORK                                │
│                                                                 │
│  ┌──────────────────────────────────────────────────────────┐   │
│  │        PUBLIC SUBNETS (ALB Tier)                         │   │
│  │           AZ-1          │           AZ-2                 │   │
│  └──────────────────────────────────────────────────────────┘   │
│                           │                                     │
│  ┌──────────────────────────────────────────────────────────┐   │
│  │      PRIVATE SUBNETS (Application Tier)                  │   │
│  │                                                           │   │
│  │  ┌─────────────────────────────────────────────────────┐ │   │
│  │  │         ECS FARGATE CLUSTER                         │ │   │
│  │  │                                                      │ │   │
│  │  │  ┌────────────────┐  ┌────────────────┐  ┌────────┐ │ │   │
│  │  │  │  Superset      │  │  Superset      │  │ Super- │ │ │   │
│  │  │  │  Instance 1    │  │  Instance 2    │  │ set N  │ │ │   │
│  │  │  │                │  │                │  │        │ │ │   │
│  │  │  │ • 1 vCPU       │  │ • 1 vCPU       │  │ • 1vCPU│ │ │   │
│  │  │  │ • 2GB RAM      │  │ • 2GB RAM      │  │ • 2GB  │ │ │   │
│  │  │  │ • Web UI       │  │ • Web UI       │  │ • UI   │ │ │   │
│  │  │  │ • Query Engine │  │ • Query Engine │  │ • SQL  │ │ │   │
│  │  │  │ • Cache Layer  │  │ • Cache Layer  │  │ • Cache│ │ │   │
│  │  │  └────────┬───────┘  └────────┬───────┘  └───┬────┘ │ │   │
│  │  └───────────┼────────────────────┼──────────────┼──────┘ │   │
│  └──────────────┼────────────────────┼──────────────┼────────┘   │
│                 │                    │              │            │
│                 └────────────────────┴──────────────┘            │
│                                │                                 │
│  ┌──────────────────────────────────────────────────────────┐   │
│  │      PRIVATE SUBNETS (Database Tier)                     │   │
│  │                                                           │   │
│  │  ┌─────────────────────────────────────────────────────┐ │   │
│  │  │         RDS POSTGRESQL MULTI-AZ                     │ │   │
│  │  │                                                      │ │   │
│  │  │  ┌──────────────────┐    ┌──────────────────────┐   │ │   │
│  │  │  │   Primary DB     │<-->│   Standby DB         │   │ │   │
│  │  │  │   (AZ-1)         │    │   (AZ-2)             │   │ │   │
│  │  │  │                  │    │   (Sync Replication) │   │ │   │
│  │  │  │ • db.r6g.large   │    │ • Auto Failover      │   │ │   │
│  │  │  │ • 100GB Storage  │    │                      │   │ │   │
│  │  │  │ • PostgreSQL 15  │    └──────────────────────┘   │ │   │
│  │  │  └──────────────────┘                                │ │   │
│  │  │                                                      │ │   │
│  │  │  Stored Data:                                        │ │   │
│  │  │  • User accounts & permissions                       │ │   │
│  │  │  • Dashboard configurations                          │ │   │
│  │  │  • Chart definitions                                 │ │   │
│  │  │  • Database connections                              │ │   │
│  │  │  • Query metadata & logs                             │ │   │
│  │  └─────────────────────────────────────────────────────┘ │   │
│  └──────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘
                           │
                           ▼
┌─────────────────────────────────────────────────────────────────┐
│              DATA SOURCE INTEGRATIONS                           │
│                                                                 │
│  ┌──────────────┐  ┌──────────────┐  ┌─────────────────────┐   │
│  │  Amazon      │  │   Redshift   │  │   External          │   │
│  │  RDS MySQL   │  │   Warehouse  │  │   Databases         │   │
│  │              │  │              │  │   (via VPN/TGW)     │   │
│  └──────────────┘  └──────────────┘  └─────────────────────┘   │
│                                                                 │
│  ┌──────────────┐  ┌──────────────┐  ┌─────────────────────┐   │
│  │   Athena     │  │  BigQuery    │  │   Snowflake         │   │
│  │  (via API)   │  │ (via API)    │  │   (via API)         │   │
│  └──────────────┘  └──────────────┘  └─────────────────────┘   │
└─────────────────────────────────────────────────────────────────┘
                           │
                           ▼
┌─────────────────────────────────────────────────────────────────┐
│                  MONITORING & SECURITY                          │
│                                                                 │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────┐     │
│  │ CloudWatch  │  │    X-Ray    │  │   Secrets Manager   │     │
│  │   Metrics   │  │   Tracing   │  │   DB Credentials    │     │
│  │   Alarms    │  │  APM Data   │  │   API Keys          │     │
│  └─────────────┘  └─────────────┘  └─────────────────────┘     │
│                                                                 │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────┐     │
│  │   WAF       │  │  Security   │  │   VPC Flow Logs     │     │
│  │   Rules     │  │   Groups    │  │                     │     │
│  └─────────────┘  └─────────────┘  └─────────────────────┘     │
└─────────────────────────────────────────────────────────────────┘

System Workflow Analysis

User Request Flow

Browser Request → Route53 DNS → ALB HTTPS Endpoint
     ↓
TLS Termination → Health Check → Select Healthy Fargate Task
     ↓
Superset Application → Query Metadata DB → Render Dashboard
     ↓
Execute Data Query → External Data Source → Process Results
     ↓
Cache Results → Return to User → Log Activity

Dashboard Rendering Pipeline

User Opens Dashboard → Load Definition from RDS
     ↓
Parse Chart Configurations → Generate SQL Queries
     ↓
Execute Against Data Sources → Aggregate Results
     ↓
Apply Transformations → Render Visualizations
     ↓
Cache for Performance → Stream to Browser

Scaling Behavior

Increased Load Detected → CloudWatch Alarm Triggered
     ↓
ECS Auto Scaling → Launch Additional Fargate Tasks
     ↓
Register with ALB → Begin Receiving Traffic
     ↓
Load Distributed → Monitor Performance → Adjust as Needed

Technology Stack Deep Dive

Why Multi-Instance Superset Deployment?

Running multiple Superset instances provides critical production benefits:

AspectSingle InstanceMulti-Instance Architecture
AvailabilitySingle point of failureSurvives instance failures
PerformanceLimited by one containerHorizontal scaling for concurrent users
MaintenanceDowntime for updatesRolling deployments, zero downtime
Geographic DistributionSingle region latencyMulti-region capability
Cost OptimizationOver-provisioned for peakScale capacity with demand

Deployment Strategy:

Minimum Production Configuration:
• 3 Superset instances (across 2+ AZs)
• Each instance: 1 vCPU, 2GB RAM
• Auto-scaling: 3-10 instances based on CPU/memory
• Total capacity: Handle 50-500 concurrent users

Database Architecture: PostgreSQL vs Alternatives

Superset requires a relational database for metadata storage:

DatabaseSuitabilityProduction Considerations
PostgreSQL (Recommended)✅ ExcellentBest performance, full feature support
MySQL✅ GoodSupported but less optimized
SQLite❌ Development onlyNot suitable for multi-instance deployments
Oracle/MSSQL✅ EnterpriseHigher licensing costs

PostgreSQL Design Decisions:

 1// RDS Configuration for Superset Metadata
 2const database = new rds.DatabaseInstance(this, 'SupersetDB', {
 3  engine: rds.DatabaseInstanceEngine.postgres({
 4    version: rds.PostgresEngineVersion.VER_15,
 5  }),
 6  instanceType: ec2.InstanceType.of(
 7    ec2.InstanceClass.R6G,  // Memory-optimized for caching
 8    ec2.InstanceSize.LARGE   // 2 vCPU, 16GB RAM
 9  ),
10  multiAz: true,  // Critical for HA
11  allocatedStorage: 100,  // Start with 100GB, auto-scale
12  maxAllocatedStorage: 500,  // Auto-scale up to 500GB
13  storageType: rds.StorageType.GP3,  // Modern SSD with better IOPS
14  backupRetention: Duration.days(7),
15  deleteProtection: true,  // Prevent accidental deletion
16  cloudwatchLogsExports: ['postgresql'],  // Export logs for analysis
17});

Key Configuration Benefits:

  • Multi-AZ: Automatic failover in 1-2 minutes during outages
  • Memory-optimized instances: Better query performance for metadata lookups
  • GP3 storage: 3000 IOPS baseline with ability to scale independently
  • Auto-scaling storage: Prevents out-of-space incidents
  • Backup retention: 7 days for disaster recovery

Network Architecture: Multi-Tier VPC Design

The three-tier network design provides security and performance isolation:

┌────────────────────────────────────────────────┐
│ PUBLIC SUBNETS (Internet-Facing)               │
│ • ALB endpoints                                │
│ • NAT Gateways for egress                      │
│ • Internet Gateway attached                    │
└────────────────────────────────────────────────┘
                    │
┌────────────────────────────────────────────────┐
│ PRIVATE SUBNETS (Application Tier)             │
│ • ECS Fargate tasks                            │
│ • No direct internet access                    │
│ • Egress via NAT Gateway                       │
└────────────────────────────────────────────────┘
                    │
┌────────────────────────────────────────────────┐
│ PRIVATE SUBNETS (Database Tier)                │
│ • RDS instances                                │
│ • No internet access                           │
│ • Security group restricted to app tier        │
└────────────────────────────────────────────────┘

Security Group Rules:

SourceDestinationPortPurpose
InternetALB443HTTPS traffic
ALBECS Tasks8088Superset web UI
ECS TasksRDS5432PostgreSQL connection
ECS TasksInternet443External data sources

CDK Infrastructure Implementation

Core Stack Architecture

The infrastructure follows modular CDK patterns for reusability and maintainability:

 1// Essential VPC setup with proper network isolation
 2const vpc = new ec2.Vpc(this, 'SupersetVpc', {
 3  maxAzs: 2,  // Multi-AZ for high availability
 4  natGateways: 1,  // Cost optimization: single NAT for non-prod
 5  subnetConfiguration: [
 6    {
 7      name: 'Public',
 8      subnetType: ec2.SubnetType.PUBLIC,
 9      cidrMask: 24,
10    },
11    {
12      name: 'Private',
13      subnetType: ec2.SubnetType.PRIVATE_WITH_EGRESS,
14      cidrMask: 24,
15    },
16    {
17      name: 'Isolated',
18      subnetType: ec2.SubnetType.PRIVATE_ISOLATED,
19      cidrMask: 24,
20    },
21  ],
22});
23
24// RDS PostgreSQL for metadata storage
25const dbSecurityGroup = new ec2.SecurityGroup(this, 'DBSecurityGroup', {
26  vpc: vpc,
27  description: 'Security group for Superset RDS instance',
28  allowAllOutbound: false,  // Least privilege
29});
30
31const database = new rds.DatabaseInstance(this, 'SupersetDatabase', {
32  engine: rds.DatabaseInstanceEngine.postgres({
33    version: rds.PostgresEngineVersion.VER_15,
34  }),
35  instanceType: ec2.InstanceType.of(
36    ec2.InstanceClass.R6G,
37    ec2.InstanceSize.LARGE
38  ),
39  vpc: vpc,
40  vpcSubnets: {
41    subnetType: ec2.SubnetType.PRIVATE_ISOLATED,  // Maximum isolation
42  },
43  multiAz: true,
44  allocatedStorage: 100,
45  maxAllocatedStorage: 500,
46  storageType: rds.StorageType.GP3,
47  storageEncrypted: true,
48  backupRetention: Duration.days(7),
49  deleteProtection: true,
50  securityGroups: [dbSecurityGroup],
51  credentials: rds.Credentials.fromGeneratedSecret('superset_admin', {
52    secretName: 'superset/db-credentials',
53  }),
54  cloudwatchLogsExports: ['postgresql'],
55  enablePerformanceInsights: true,
56  performanceInsightRetention: rds.PerformanceInsightRetention.DEFAULT,
57});

Infrastructure Design Principles:

  • Defense in depth: Multiple security layers (network, IAM, security groups)
  • High availability: Multi-AZ deployment for both compute and database
  • Observability: CloudWatch integration at every layer
  • Cost optimization: Right-sized instances with auto-scaling

ECS Cluster and Service Configuration

The ECS service manages Superset containers with intelligent orchestration:

  1// ECS cluster for Superset application
  2const cluster = new ecs.Cluster(this, 'SupersetCluster', {
  3  vpc: vpc,
  4  clusterName: 'superset-production',
  5  containerInsights: true,  // Enhanced CloudWatch monitoring
  6});
  7
  8// Task definition for Superset
  9const taskDefinition = new ecs.FargateTaskDefinition(this, 'SupersetTask', {
 10  cpu: 1024,  // 1 vCPU
 11  memoryLimitMiB: 2048,  // 2GB RAM
 12  family: 'superset-app',
 13});
 14
 15// Superset container configuration
 16const supersetContainer = taskDefinition.addContainer('SupersetContainer', {
 17  image: ecs.ContainerImage.fromRegistry('apache/superset:latest'),
 18  logging: ecs.LogDrivers.awsLogs({
 19    streamPrefix: 'superset',
 20    logRetention: logs.RetentionDays.ONE_WEEK,
 21  }),
 22  environment: {
 23    SUPERSET_ENV: 'production',
 24    REDIS_HOST: redisCluster.attrRedisEndpointAddress,
 25    REDIS_PORT: redisCluster.attrRedisEndpointPort,
 26  },
 27  secrets: {
 28    DATABASE_URL: ecs.Secret.fromSecretsManager(database.secret!),
 29    SECRET_KEY: ecs.Secret.fromSecretsManager(supersetSecretKey),
 30  },
 31  healthCheck: {
 32    command: ['CMD-SHELL', 'curl -f http://localhost:8088/health || exit 1'],
 33    interval: Duration.seconds(30),
 34    timeout: Duration.seconds(5),
 35    retries: 3,
 36    startPeriod: Duration.seconds(60),
 37  },
 38  portMappings: [{
 39    containerPort: 8088,
 40    protocol: ecs.Protocol.TCP,
 41  }],
 42});
 43
 44// Application Load Balancer
 45const alb = new elbv2.ApplicationLoadBalancer(this, 'SupersetALB', {
 46  vpc: vpc,
 47  internetFacing: true,
 48  vpcSubnets: {
 49    subnetType: ec2.SubnetType.PUBLIC,
 50  },
 51  securityGroup: albSecurityGroup,
 52});
 53
 54// HTTPS listener with ACM certificate
 55const httpsListener = alb.addListener('HttpsListener', {
 56  port: 443,
 57  protocol: elbv2.ApplicationProtocol.HTTPS,
 58  certificates: [certificate],
 59  defaultAction: elbv2.ListenerAction.fixedResponse(404),
 60});
 61
 62// ECS Fargate service with load balancing
 63const service = new ecs.FargateService(this, 'SupersetService', {
 64  cluster: cluster,
 65  taskDefinition: taskDefinition,
 66  desiredCount: 3,  // Minimum 3 instances for HA
 67  minHealthyPercent: 50,  // Allow rolling updates
 68  maxHealthyPercent: 200,  // Can temporarily double capacity during deployments
 69  assignPublicIp: false,  // Private subnets only
 70  vpcSubnets: {
 71    subnetType: ec2.SubnetType.PRIVATE_WITH_EGRESS,
 72  },
 73  securityGroups: [appSecurityGroup],
 74  cloudMapOptions: {
 75    name: 'superset',
 76    dnsRecordType: servicediscovery.DnsRecordType.A,
 77  },
 78  enableExecuteCommand: true,  // Enable ECS Exec for debugging
 79});
 80
 81// Register service with load balancer
 82const targetGroup = httpsListener.addTargets('SupersetTargets', {
 83  targets: [service],
 84  port: 8088,
 85  protocol: elbv2.ApplicationProtocol.HTTP,
 86  healthCheck: {
 87    path: '/health',
 88    interval: Duration.seconds(30),
 89    timeout: Duration.seconds(5),
 90    healthyThresholdCount: 2,
 91    unhealthyThresholdCount: 3,
 92  },
 93  deregistrationDelay: Duration.seconds(30),  // Graceful shutdown
 94  stickinessCookieDuration: Duration.hours(1),  // Session affinity
 95});
 96
 97// Auto-scaling configuration
 98const scaling = service.autoScaleTaskCount({
 99  minCapacity: 3,
100  maxCapacity: 10,
101});
102
103scaling.scaleOnCpuUtilization('CpuScaling', {
104  targetUtilizationPercent: 70,
105  scaleInCooldown: Duration.seconds(300),
106  scaleOutCooldown: Duration.seconds(60),
107});
108
109scaling.scaleOnMemoryUtilization('MemoryScaling', {
110  targetUtilizationPercent: 80,
111  scaleInCooldown: Duration.seconds(300),
112  scaleOutCooldown: Duration.seconds(60),
113});

Service Configuration Highlights:

  • Rolling deployments: Zero-downtime updates with health checks
  • Auto-scaling: CPU and memory-based scaling for efficiency
  • Health monitoring: ALB removes unhealthy instances automatically
  • Session affinity: Sticky sessions for better user experience
  • Execute command enabled: Debugging access without SSH

Superset Initialization and Configuration

Superset requires initialization tasks for first-time setup:

 1// One-time initialization task
 2const initTaskDefinition = new ecs.FargateTaskDefinition(this, 'InitTask', {
 3  cpu: 512,
 4  memoryLimitMiB: 1024,
 5});
 6
 7const initContainer = initTaskDefinition.addContainer('InitContainer', {
 8  image: ecs.ContainerImage.fromRegistry('apache/superset:latest'),
 9  command: [
10    '/bin/bash',
11    '-c',
12    `
13    # Initialize Superset database schema
14    superset db upgrade
15
16    # Create admin user
17    superset fab create-admin \
18      --username admin \
19      --firstname Admin \
20      --lastname User \
21      --email admin@example.com \
22      --password ${ADMIN_PASSWORD}
23
24    # Initialize Superset
25    superset init
26
27    # Load example dashboards (optional)
28    superset load_examples
29    `
30  ],
31  logging: ecs.LogDrivers.awsLogs({
32    streamPrefix: 'superset-init',
33  }),
34  secrets: {
35    DATABASE_URL: ecs.Secret.fromSecretsManager(database.secret!),
36    ADMIN_PASSWORD: ecs.Secret.fromSecretsManager(adminPasswordSecret),
37  },
38});
39
40// Run initialization via Lambda custom resource
41new cr.AwsCustomResource(this, 'SupersetInit', {
42  onCreate: {
43    service: 'ECS',
44    action: 'runTask',
45    parameters: {
46      cluster: cluster.clusterName,
47      taskDefinition: initTaskDefinition.taskDefinitionArn,
48      launchType: 'FARGATE',
49      networkConfiguration: {
50        awsvpcConfiguration: {
51          subnets: vpc.privateSubnets.map(s => s.subnetId),
52          securityGroups: [appSecurityGroup.securityGroupId],
53        },
54      },
55    },
56    physicalResourceId: cr.PhysicalResourceId.of('superset-init'),
57  },
58  policy: cr.AwsCustomResourcePolicy.fromSdkCalls({
59    resources: cr.AwsCustomResourcePolicy.ANY_RESOURCE,
60  }),
61});

Advanced Features: Redis Cache Layer

For production performance, add Redis caching:

 1// ElastiCache Redis for query caching
 2const cacheSubnetGroup = new elasticache.CfnSubnetGroup(this, 'CacheSubnetGroup', {
 3  description: 'Subnet group for Superset Redis cache',
 4  subnetIds: vpc.privateSubnets.map(s => s.subnetId),
 5});
 6
 7const cacheSecurityGroup = new ec2.SecurityGroup(this, 'CacheSecurityGroup', {
 8  vpc: vpc,
 9  description: 'Security group for Redis cache',
10});
11
12cacheSecurityGroup.addIngressRule(
13  appSecurityGroup,
14  ec2.Port.tcp(6379),
15  'Allow Redis access from Superset'
16);
17
18const redisCluster = new elasticache.CfnReplicationGroup(this, 'RedisCluster', {
19  replicationGroupDescription: 'Superset query cache',
20  engine: 'redis',
21  engineVersion: '7.0',
22  cacheNodeType: 'cache.r6g.large',
23  numCacheClusters: 2,  // Primary + replica
24  automaticFailoverEnabled: true,
25  multiAzEnabled: true,
26  cacheSubnetGroupName: cacheSubnetGroup.ref,
27  securityGroupIds: [cacheSecurityGroup.securityGroupId],
28  atRestEncryptionEnabled: true,
29  transitEncryptionEnabled: true,
30});

Caching Strategy Benefits:

  • Query performance: 10-100x speedup for repeated queries
  • Database load reduction: Fewer hits to data sources
  • Cost optimization: Reduce compute costs on data warehouses
  • User experience: Near-instant dashboard loads for cached data

Security Architecture

Multi-Layer Security Strategy

LayerProtection MechanismImplementation
NetworkVPC isolation, security groupsPrivate subnets, least privilege rules
TransportTLS encryptionACM certificates on ALB
DataEncryption at restRDS and EBS encryption
ApplicationRole-based access controlSuperset RBAC + IAM
SecretsCentralized managementSecrets Manager integration
AuditComprehensive loggingCloudTrail + CloudWatch Logs

IAM Permission Model

 1// ECS task role with minimal permissions
 2const taskRole = new iam.Role(this, 'SupersetTaskRole', {
 3  assumedBy: new iam.ServicePrincipal('ecs-tasks.amazonaws.com'),
 4  inlinePolicies: {
 5    'SecretsAccess': new iam.PolicyDocument({
 6      statements: [
 7        new iam.PolicyStatement({
 8          actions: ['secretsmanager:GetSecretValue'],
 9          resources: [
10            database.secret!.secretArn,
11            supersetSecretKey.secretArn,
12          ],
13        }),
14      ],
15    }),
16    'CloudWatchLogs': new iam.PolicyDocument({
17      statements: [
18        new iam.PolicyStatement({
19          actions: [
20            'logs:CreateLogStream',
21            'logs:PutLogEvents',
22          ],
23          resources: ['*'],
24        }),
25      ],
26    }),
27  },
28});
29
30// Execution role for pulling container images
31const executionRole = new iam.Role(this, 'SupersetExecutionRole', {
32  assumedBy: new iam.ServicePrincipal('ecs-tasks.amazonaws.com'),
33  managedPolicies: [
34    iam.ManagedPolicy.fromAwsManagedPolicyName(
35      'service-role/AmazonECSTaskExecutionRolePolicy'
36    ),
37  ],
38});

Superset Application Security

 1# superset_config.py - Production security settings
 2
 3# Secret key for session encryption
 4SECRET_KEY = os.environ.get('SECRET_KEY')
 5
 6# CSRF protection
 7WTF_CSRF_ENABLED = True
 8WTF_CSRF_TIME_LIMIT = None
 9
10# Authentication method
11AUTH_TYPE = AUTH_DB  # Database authentication
12# AUTH_TYPE = AUTH_OAUTH  # Or OAuth for enterprise SSO
13
14# Row-level security
15ROW_LEVEL_SECURITY = True
16
17# SQL Lab settings
18SQLLAB_ASYNC_TIME_LIMIT_SEC = 300  # 5 minute query timeout
19SQLLAB_QUERY_COST_ESTIMATE_TIMEOUT = 10
20
21# Rate limiting
22RATELIMIT_ENABLED = True
23RATELIMIT_APPLICATION = "10 per second"
24
25# Data source connection encryption
26SQLALCHEMY_DATABASE_URI_REQUIRE_SSL = True

Monitoring and Observability

Comprehensive Monitoring Dashboard

 1// CloudWatch dashboard for Superset operations
 2const dashboard = new cloudwatch.Dashboard(this, 'SupersetDashboard', {
 3  dashboardName: 'Superset-Production-Metrics',
 4});
 5
 6// ECS service metrics
 7dashboard.addWidgets(
 8  new cloudwatch.GraphWidget({
 9    title: 'ECS Service Health',
10    left: [
11      service.metricCpuUtilization(),
12      service.metricMemoryUtilization(),
13    ],
14    right: [
15      service.metricRunningTaskCount(),
16    ],
17  }),
18  new cloudwatch.GraphWidget({
19    title: 'ALB Performance',
20    left: [
21      alb.metricRequestCount(),
22      alb.metricTargetResponseTime(),
23    ],
24    right: [
25      alb.metricHttpCodeTarget(elbv2.HttpCodeTarget.TARGET_2XX_COUNT),
26      alb.metricHttpCodeTarget(elbv2.HttpCodeTarget.TARGET_5XX_COUNT),
27    ],
28  })
29);
30
31// RDS database metrics
32dashboard.addWidgets(
33  new cloudwatch.GraphWidget({
34    title: 'Database Performance',
35    left: [
36      database.metricCPUUtilization(),
37      database.metricDatabaseConnections(),
38    ],
39    right: [
40      database.metricReadLatency(),
41      database.metricWriteLatency(),
42    ],
43  })
44);
45
46// Custom application metrics
47const dashboardLoadTime = new cloudwatch.Metric({
48  namespace: 'Superset/Application',
49  metricName: 'DashboardLoadTime',
50  statistic: 'Average',
51  period: Duration.minutes(5),
52});
53
54const queryExecutionTime = new cloudwatch.Metric({
55  namespace: 'Superset/Application',
56  metricName: 'QueryExecutionTime',
57  statistic: 'Average',
58  period: Duration.minutes(5),
59});

Alerting Configuration

 1// SNS topic for operational alerts
 2const alertTopic = new sns.Topic(this, 'SupersetAlerts', {
 3  displayName: 'Superset Production Alerts',
 4});
 5
 6alertTopic.addSubscription(
 7  new subscriptions.EmailSubscription('ops-team@example.com')
 8);
 9
10// Critical alerts
11new cloudwatch.Alarm(this, 'HighErrorRate', {
12  metric: alb.metricHttpCodeTarget(
13    elbv2.HttpCodeTarget.TARGET_5XX_COUNT
14  ),
15  threshold: 10,
16  evaluationPeriods: 2,
17  alarmDescription: 'High 5XX error rate from Superset',
18  actionsEnabled: true,
19}).addAlarmAction(new cloudwatch_actions.SnsAction(alertTopic));
20
21new cloudwatch.Alarm(this, 'DatabaseHighCPU', {
22  metric: database.metricCPUUtilization(),
23  threshold: 80,
24  evaluationPeriods: 3,
25  alarmDescription: 'Database CPU usage above 80%',
26}).addAlarmAction(new cloudwatch_actions.SnsAction(alertTopic));
27
28new cloudwatch.Alarm(this, 'NoHealthyTasks', {
29  metric: service.metricRunningTaskCount(),
30  threshold: 2,
31  comparisonOperator: cloudwatch.ComparisonOperator.LESS_THAN_THRESHOLD,
32  evaluationPeriods: 2,
33  alarmDescription: 'Less than 2 healthy Superset tasks running',
34}).addAlarmAction(new cloudwatch_actions.SnsAction(alertTopic));
35
36// Performance degradation alerts
37new cloudwatch.Alarm(this, 'HighResponseTime', {
38  metric: alb.metricTargetResponseTime(),
39  threshold: 2,  // 2 second response time threshold
40  evaluationPeriods: 3,
41  alarmDescription: 'ALB response time exceeds 2 seconds',
42}).addAlarmAction(new cloudwatch_actions.SnsAction(alertTopic));

Cost Analysis and Optimization

Detailed Cost Breakdown

Production Superset deployment monthly costs:

ServiceConfigurationMonthly CostPercentage
ECS Fargate3 tasks (1 vCPU, 2GB) 24/7~$10548%
RDS PostgreSQLdb.r6g.large Multi-AZ~$8539%
Application Load BalancerStandard ALB~$209%
NAT Gateway1 NAT + data transfer~$3516%
ElastiCache Rediscache.r6g.large (optional)~$100-
Data TransferOutbound to internetVariable-
CloudWatchLogs and metrics~$105%
Route53Hosted zone + queries~$1<1%
Total (without Redis)-~$220/month100%
Total (with Redis)-~$320/month-

Cost Optimization Strategies

1. Right-Size Resources Based on Usage

EnvironmentECS TasksRDS InstanceMonthly Cost
Development1 task (0.5 vCPU, 1GB)db.t4g.medium~$60
Staging2 tasks (1 vCPU, 2GB)db.t4g.large~$120
Production3-10 tasks (1 vCPU, 2GB)db.r6g.large~$220

2. Use Savings Plans and Reserved Capacity

 1// For predictable workloads, use Fargate Spot for non-critical tasks
 2const service = new ecs.FargateService(this, 'SupersetService', {
 3  cluster: cluster,
 4  taskDefinition: taskDefinition,
 5  capacityProviderStrategies: [
 6    {
 7      capacityProvider: 'FARGATE_SPOT',
 8      weight: 2,  // 67% Spot
 9      base: 1,    // Always 1 on-demand
10    },
11    {
12      capacityProvider: 'FARGATE',
13      weight: 1,  // 33% On-demand
14    },
15  ],
16});
17// Potential savings: 50-70% on Fargate costs

3. Implement Lifecycle Policies

 1// Auto-delete old CloudWatch logs
 2const logGroup = new logs.LogGroup(this, 'SupersetLogs', {
 3  retention: logs.RetentionDays.ONE_WEEK,  // Adjust based on compliance
 4});
 5
 6// RDS automated backups with lifecycle
 7const database = new rds.DatabaseInstance(this, 'SupersetDB', {
 8  backupRetention: Duration.days(7),  // Balance cost vs recovery needs
 9  preferredBackupWindow: '03:00-04:00',  // Off-peak hours
10});

4. Schedule Non-Production Environments

 1# Lambda function to stop/start ECS services
 2# Save ~60% on dev/staging by running 12 hours/day instead of 24/7
 3
 4# Stop at 8 PM
 5aws ecs update-service --cluster superset-dev \
 6  --service superset-service --desired-count 0
 7
 8# Start at 8 AM
 9aws ecs update-service --cluster superset-dev \
10  --service superset-service --desired-count 1

Cost vs. Performance Tradeoffs

ConfigurationCostPerformanceUse Case
Minimal$60/monthSingle instance, small DBPOC/Demo
Standard$220/month3 instances, HA DBSmall teams (<50 users)
Enhanced$320/monthAuto-scale, Redis cacheMedium teams (50-200 users)
Enterprise$1000+/monthMulti-region, read replicasLarge orgs (500+ users)

Deployment Strategy and Operations

Initial Deployment Workflow

 1# 1. Install dependencies
 2npm install
 3
 4# 2. Configure deployment parameters
 5export AWS_REGION=us-east-1
 6export DOMAIN_NAME=analytics.company.com
 7export CERTIFICATE_ARN=arn:aws:acm:...
 8
 9# 3. Bootstrap CDK (first-time only)
10cdk bootstrap aws://ACCOUNT_ID/us-east-1
11
12# 4. Deploy infrastructure
13cdk deploy SupersetStack
14
15# 5. Get ALB DNS name
16aws elbv2 describe-load-balancers \
17  --query 'LoadBalancers[0].DNSName' \
18  --output text
19
20# 6. Configure DNS (Route53 or external)
21# Point analytics.company.com to ALB DNS
22
23# 7. Initialize Superset (automatic via custom resource)
24# Admin credentials stored in Secrets Manager
25
26# 8. Access Superset
27# https://analytics.company.com

Configuration Management

Environment-specific configurations using CDK context:

 1// cdk.json
 2{
 3  "context": {
 4    "dev": {
 5      "instanceCount": 1,
 6      "instanceType": "t3.small",
 7      "dbInstanceType": "db.t4g.medium",
 8      "enableRedis": false,
 9      "domainName": "dev-analytics.company.com"
10    },
11    "prod": {
12      "instanceCount": 3,
13      "instanceType": "t3.medium",
14      "dbInstanceType": "db.r6g.large",
15      "enableRedis": true,
16      "multiAz": true,
17      "domainName": "analytics.company.com"
18    }
19  }
20}

Deploy with environment:

1cdk deploy --context env=prod

Operational Tasks

Update Superset version:

 1# Update container image in task definition
 2aws ecs register-task-definition \
 3  --cli-input-json file://task-def.json
 4
 5# Update service with new task definition
 6aws ecs update-service \
 7  --cluster superset-production \
 8  --service superset-service \
 9  --task-definition superset-app:LATEST \
10  --force-new-deployment

Database maintenance:

 1# Create manual snapshot before major changes
 2aws rds create-db-snapshot \
 3  --db-instance-identifier superset-db \
 4  --db-snapshot-identifier superset-backup-$(date +%Y%m%d)
 5
 6# Scale database instance (minimal downtime)
 7aws rds modify-db-instance \
 8  --db-instance-identifier superset-db \
 9  --db-instance-class db.r6g.xlarge \
10  --apply-immediately

Access Superset container for debugging:

 1# List running tasks
 2TASK_ARN=$(aws ecs list-tasks \
 3  --cluster superset-production \
 4  --service-name superset-service \
 5  --query 'taskArns[0]' --output text)
 6
 7# Execute command in container
 8aws ecs execute-command \
 9  --cluster superset-production \
10  --task ${TASK_ARN} \
11  --container SupersetContainer \
12  --interactive \
13  --command "/bin/bash"

Production Lessons and Best Practices

Key Architectural Principles

PrincipleImplementationBusiness Impact
High AvailabilityMulti-AZ, auto-scaling, health checks99.95%+ uptime SLA
PerformanceRedis caching, connection poolingSub-second dashboard loads
SecurityNetwork isolation, encryption, RBACSOC2/HIPAA compliance ready
Cost EfficiencyRight-sized resources, auto-scaling40% cost reduction vs static sizing

Critical Success Factors

1. Database Connection Management

Superset can exhaust database connections under load:

1# superset_config.py
2SQLALCHEMY_POOL_SIZE = 20  # Max connections per instance
3SQLALCHEMY_POOL_TIMEOUT = 300
4SQLALCHEMY_MAX_OVERFLOW = 40  # Additional connections under load
5SQLALCHEMY_POOL_RECYCLE = 3600  # Recycle connections hourly

Calculate required connections:

Max Connections = (Superset Instances) * (Pool Size + Max Overflow)
Example: 5 instances * (20 + 40) = 300 connections

RDS max_connections parameter must be >= this value

2. Query Performance Optimization

Implement query result caching aggressively:

 1# Cache configuration
 2CACHE_CONFIG = {
 3    'CACHE_TYPE': 'redis',
 4    'CACHE_REDIS_URL': f'redis://{REDIS_HOST}:{REDIS_PORT}/0',
 5    'CACHE_DEFAULT_TIMEOUT': 3600,  # 1 hour default
 6}
 7
 8# Per-dashboard cache timeout
 9SUPERSET_CACHE_TIMEOUT = {
10    'daily_metrics': 3600,  # 1 hour
11    'real_time_dashboard': 300,  # 5 minutes
12    'historical_reports': 86400,  # 24 hours
13}

3. Observability is Critical

Custom metrics for Superset application performance:

 1# Instrument Superset with CloudWatch metrics
 2import boto3
 3cloudwatch = boto3.client('cloudwatch')
 4
 5def log_dashboard_load_time(dashboard_id, load_time_ms):
 6    cloudwatch.put_metric_data(
 7        Namespace='Superset/Application',
 8        MetricData=[{
 9            'MetricName': 'DashboardLoadTime',
10            'Value': load_time_ms,
11            'Unit': 'Milliseconds',
12            'Dimensions': [{
13                'Name': 'DashboardId',
14                'Value': str(dashboard_id)
15            }]
16        }]
17    )

4. Disaster Recovery Planning

Implement comprehensive backup strategy:

  • RDS automated backups: 7-35 days retention
  • Manual snapshots: Before major deployments
  • Cross-region replication: For critical data
  • Dashboard export: Regular JSON exports of dashboard definitions
  • User metadata backup: Weekly backup of users, roles, permissions

Common Pitfalls and Solutions

ChallengeSolution
Slow dashboard loadsImplement Redis caching, optimize SQL queries
Database connection exhaustionIncrease RDS max_connections, tune pool settings
Out of memory errorsIncrease Fargate task memory, implement query limits
SSL certificate expirationUse ACM for automatic renewal
Lost admin accessStore credentials in Secrets Manager, implement break-glass procedure

Scaling Beyond Basic Deployment

Multi-Region Architecture

For global teams, deploy Superset across multiple regions:

 1// Primary region (us-east-1)
 2const primaryStack = new SupersetStack(app, 'SupersetPrimary', {
 3  env: { region: 'us-east-1' },
 4});
 5
 6// Secondary region (eu-west-1)
 7const secondaryStack = new SupersetStack(app, 'SupersetSecondary', {
 8  env: { region: 'eu-west-1' },
 9});
10
11// Route53 latency-based routing
12const hostedZone = route53.HostedZone.fromLookup(this, 'Zone', {
13  domainName: 'company.com',
14});
15
16new route53.ARecord(this, 'PrimaryRecord', {
17  zone: hostedZone,
18  recordName: 'analytics',
19  target: route53.RecordTarget.fromAlias(
20    new targets.LoadBalancerTarget(primaryStack.alb)
21  ),
22  region: 'us-east-1',
23});
24
25new route53.ARecord(this, 'SecondaryRecord', {
26  zone: hostedZone,
27  recordName: 'analytics',
28  target: route53.RecordTarget.fromAlias(
29    new targets.LoadBalancerTarget(secondaryStack.alb)
30  ),
31  region: 'eu-west-1',
32});

Advanced Analytics Features

Real-Time Data Integration:

  • Kinesis Data Streams: Integrate with real-time event streams
  • DynamoDB: Low-latency operational analytics
  • Timestream: Time-series data for IoT and monitoring

Enhanced Security:

  • AWS SSO Integration: Enterprise authentication via SAML
  • Custom OAuth: Integration with corporate identity providers
  • Row-level security: Dynamic SQL filters based on user attributes

Performance Enhancements:

  • Read replicas: Offload reporting queries from primary database
  • Query federation: Combine data from multiple sources in single dashboard
  • Materialized views: Pre-compute complex aggregations

Conclusion

Building a production-grade Apache Superset deployment on AWS demonstrates how managed services and infrastructure-as-code combine to create enterprise-scale business intelligence platforms. This implementation showcases the power of ECS Fargate for container orchestration, RDS for reliable data persistence, and CDK for reproducible infrastructure deployment.

Why This Architecture Succeeds

The multi-tier serverless approach excels for BI workloads because:

  • High Availability: Multi-AZ deployment across compute and database tiers ensures 99.95%+ uptime
  • Scalability: Auto-scaling ECS tasks handle 50-500+ concurrent users seamlessly
  • Performance: Redis caching and RDS read replicas deliver sub-second dashboard loads
  • Security: Network isolation, encryption, and IAM integration meet compliance requirements
  • Cost Efficiency: Pay-per-use model with auto-scaling optimizes resource utilization

Architecture Decision Framework

The key decisions that make this system production-ready:

  1. ECS Fargate over EC2: Serverless containers eliminate operational overhead
  2. RDS Multi-AZ PostgreSQL: Managed database with automatic failover
  3. Application Load Balancer: Layer 7 routing with health checks and SSL termination
  4. Redis Caching: 10-100x query performance improvement
  5. CDK Infrastructure: Version-controlled, reproducible deployments

Real-World Performance

At production scale, this architecture delivers:

  • 99.95% availability with automatic failover and task recovery
  • Sub-second dashboard loads for cached queries
  • 10-50 concurrent users per instance based on query complexity
  • $220-320/month for small-to-medium team deployments

Beyond Basic Deployment

The patterns established here extend to various enterprise scenarios:

  • Multi-region deployments: Global teams with latency-optimized routing
  • Custom data connectors: Integration with proprietary data sources
  • Embedded analytics: White-label dashboards in customer-facing applications
  • Advanced governance: Data lineage tracking and compliance reporting

The complete implementation, including CDK code, configuration examples, and deployment guides, is available in the CDK playground repository.

Whether you’re implementing your first self-hosted BI platform or migrating from commercial solutions like Tableau or Looker, this architecture provides a proven foundation for scalable, cost-effective analytics on AWS.

Yen

Yen

Yen