β Back to Cheat Sheets
Palindrome
Table of Contents
- # Overview
- # Key Properties
- # Problem Categories
- # References
- # Templates & Algorithms
- # Template Comparison Table
- # Template 1: Two Pointers (Most Common)
- # Template 2: Center Expansion (Substring Problems)
- # Template 3: Dynamic Programming (Complex Counting)
- # Template 4: Backtracking (Partitioning)
- # Template 5: Longest Palindromic Subsequence (DP)
- # Template 6: Number Palindrome
- # Problems by Pattern
- # Pattern 1: Basic Palindrome Validation
- # Pattern 2: Palindrome Substring Problems
- # Pattern 3: Palindrome Construction & Partitioning
- # Pattern 4: Palindrome Manipulation (Insertions/Deletions)
- # Pattern 5: Advanced Palindrome Problems
- # Pattern 6: Number Palindromes
- # Additional Practice Problems
- # Problem Categories Summary
- # Template Usage Statistics
- # Pattern Selection Framework
- # Decision Flowchart for Palindrome Problems
- # Template Selection Guide
- # Problem-Solving Strategy
- # Common Problem Patterns Recognition
- # Summary & Quick Reference
- # Complexity Quick Reference
- # Template Quick Reference
- # Common Patterns & Tricks
- # Problem-Solving Steps
- # Common Mistakes & Tips
- # Interview Tips
- # Related Topics
# Palindrome (εζ)
# Overview
Palindrome is a sequence that reads the same forward and backward. Itβs a fundamental concept in string manipulation and array processing, commonly appearing in coding interviews.
# Key Properties
- Time Complexity: O(n) for basic operations, O(nΒ²) for substring problems
- Space Complexity: O(1) for two-pointer approach, O(n) for recursive/DP solutions
- Core Idea: Compare characters/elements from both ends moving toward the center
- When to Use: String validation, substring problems, number manipulation, partitioning
# Problem Categories
# Pattern 1: Basic Palindrome Validation
- Description: Check if a given string/array/number is a palindrome
- Examples: LC 9, 125, 234 - Valid Palindrome, Palindrome Number, Palindrome Linked List
- Pattern: Two pointers from ends, or reverse and compare
# Pattern 2: Palindrome Substring Problems
- Description: Find longest palindromic substring or count palindromic substrings
- Examples: LC 5, 647, 214 - Longest Palindromic Substring, Palindromic Substrings
- Pattern: Center expansion or dynamic programming
# Pattern 3: Palindrome Construction & Partitioning
- Description: Break string into palindromic parts or construct palindromes
- Examples: LC 131, 132, 336 - Palindrome Partitioning I/II, Palindrome Pairs
- Pattern: Backtracking with palindrome validation, dynamic programming
# Pattern 4: Palindrome Manipulation
- Description: Transform strings to create palindromes (insertions, deletions)
- Examples: LC 516, 1312, 1332 - Longest Palindromic Subsequence, Minimum Insertions
- Pattern: Dynamic programming with edit distance concepts
# Pattern 5: Advanced Palindrome Problems
- Description: Complex palindrome problems with additional constraints
- Examples: LC 1147, 1177, 1930 - Longest Chunked Palindrome, Can Make Palindrome
- Pattern: Sliding window, hash tables, bit manipulation
# Pattern 6: Number Palindromes
- Description: Palindrome problems involving integers and mathematical operations
- Examples: LC 9, 479, 564 - Palindrome Number, Largest Palindrome Product
- Pattern: Mathematical manipulation, string conversion
# References
- LeetCode Palindrome Problems
- Algorithm Design Manual - String Algorithms
# Templates & Algorithms
# Template Comparison Table
| Template Type | Use Case | Time Complexity | When to Use |
|---|---|---|---|
| Two Pointers | Basic validation | O(n) | Simple palindrome check |
| Center Expansion | Find longest substring | O(nΒ²) | Substring problems |
| Reverse & Compare | Simple check | O(n) | When space is not a constraint |
| DP (2D) | Complex substring counting | O(nΒ²) | Multiple subproblems |
| Recursive + Memo | Subsequence problems | O(nΒ²) | Overlapping subproblems |
| Backtracking | Partitioning | O(2^n) | Generate all partitions |
# Template 1: Two Pointers (Most Common)
def is_palindrome_two_pointers(s):
"""
Basic palindrome check using two pointers
Time: O(n), Space: O(1)
"""
left, right = 0, len(s) - 1
while left < right:
# Skip non-alphanumeric characters (for valid palindrome problems)
while left < right and not s[left].isalnum():
left += 1
while left < right and not s[right].isalnum():
right -= 1
# Compare characters (case-insensitive)
if s[left].lower() != s[right].lower():
return False
left += 1
right -= 1
return True
# Java version
class Solution {
public boolean isPalindrome(String s) {
int left = 0, right = s.length() - 1;
while (left < right) {
while (left < right && !Character.isLetterOrDigit(s.charAt(left))) {
left++;
}
while (left < right && !Character.isLetterOrDigit(s.charAt(right))) {
right--;
}
if (Character.toLowerCase(s.charAt(left)) !=
Character.toLowerCase(s.charAt(right))) {
return false;
}
left++;
right--;
}
return true;
}
}
# Template 2: Center Expansion (Substring Problems)
def longest_palindromic_substring(s):
"""
Find longest palindromic substring using center expansion
Time: O(nΒ²), Space: O(1)
"""
if not s:
return ""
start, max_len = 0, 1
def expand_around_center(left, right):
# Expand while characters match
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return right - left - 1 # Length of palindrome
for i in range(len(s)):
# Check for odd-length palindromes (center at i)
len1 = expand_around_center(i, i)
# Check for even-length palindromes (center between i and i+1)
len2 = expand_around_center(i, i + 1)
current_max = max(len1, len2)
if current_max > max_len:
max_len = current_max
start = i - (current_max - 1) // 2
return s[start:start + max_len]
# Java version
class Solution {
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i); // odd length
int len2 = expandAroundCenter(s, i, i + 1); // even length
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
}
return right - left - 1;
}
}
# Template 3: Dynamic Programming (Complex Counting)
def count_palindromic_substrings(s):
"""
Count all palindromic substrings using DP
Time: O(nΒ²), Space: O(nΒ²)
"""
n = len(s)
# dp[i][j] = True if s[i:j+1] is palindrome
dp = [[False] * n for _ in range(n)]
count = 0
# Single characters are palindromes
for i in range(n):
dp[i][i] = True
count += 1
# Check for palindromes of length 2
for i in range(n - 1):
if s[i] == s[i + 1]:
dp[i][i + 1] = True
count += 1
# Check for palindromes of length 3+
for length in range(3, n + 1):
for i in range(n - length + 1):
j = i + length - 1
# Check if s[i:j+1] is palindrome
if s[i] == s[j] and dp[i + 1][j - 1]:
dp[i][j] = True
count += 1
return count
# Space-optimized version using center expansion
def count_palindromic_substrings_optimized(s):
"""
Time: O(nΒ²), Space: O(1)
"""
count = 0
def expand_and_count(left, right):
nonlocal count
while left >= 0 and right < len(s) and s[left] == s[right]:
count += 1
left -= 1
right += 1
for i in range(len(s)):
# Odd length palindromes
expand_and_count(i, i)
# Even length palindromes
expand_and_count(i, i + 1)
return count
# Template 4: Backtracking (Partitioning)
def palindrome_partitioning(s):
"""
Find all palindrome partitions using backtracking
Time: O(n * 2^n), Space: O(n)
"""
result = []
current_partition = []
def is_palindrome(start, end):
while start < end:
if s[start] != s[end]:
return False
start += 1
end -= 1
return True
def backtrack(start):
# Base case: reached end of string
if start >= len(s):
result.append(current_partition[:])
return
# Try all possible endings for current substring
for end in range(start, len(s)):
# If current substring is palindrome
if is_palindrome(start, end):
current_partition.append(s[start:end + 1])
backtrack(end + 1)
current_partition.pop()
backtrack(0)
return result
# Optimized with memoization
def palindrome_partitioning_memo(s):
"""
With palindrome check memoization
"""
n = len(s)
# Precompute palindrome checks
is_palin = [[False] * n for _ in range(n)]
# Fill palindrome table
for i in range(n):
is_palin[i][i] = True
for i in range(n - 1):
is_palin[i][i + 1] = (s[i] == s[i + 1])
for length in range(3, n + 1):
for i in range(n - length + 1):
j = i + length - 1
is_palin[i][j] = (s[i] == s[j] and is_palin[i + 1][j - 1])
result = []
current_partition = []
def backtrack(start):
if start >= n:
result.append(current_partition[:])
return
for end in range(start, n):
if is_palin[start][end]:
current_partition.append(s[start:end + 1])
backtrack(end + 1)
current_partition.pop()
backtrack(0)
return result
# Template 5: Longest Palindromic Subsequence (DP)
def longest_palindromic_subsequence(s):
"""
Find length of longest palindromic subsequence using DP
Time: O(nΒ²), Space: O(nΒ²)
"""
n = len(s)
# dp[i][j] = length of LPS in s[i:j+1]
dp = [[0] * n for _ in range(n)]
# Single characters have LPS length 1
for i in range(n):
dp[i][i] = 1
# Fill for substrings of length 2+
for length in range(2, n + 1):
for i in range(n - length + 1):
j = i + length - 1
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][n - 1]
# Space-optimized version
def longest_palindromic_subsequence_optimized(s):
"""
Time: O(nΒ²), Space: O(n)
"""
n = len(s)
dp = [1] * n
for i in range(n - 2, -1, -1):
prev = 0
for j in range(i + 1, n):
temp = dp[j]
if s[i] == s[j]:
dp[j] = prev + 2
else:
dp[j] = max(dp[j], dp[j - 1])
prev = temp
return dp[n - 1]
# Template 6: Number Palindrome
def is_palindrome_number(x):
"""
Check if integer is palindrome without converting to string
Time: O(log x), Space: O(1)
"""
# Negative numbers are not palindromes
if x < 0:
return False
# Single digit numbers are palindromes
if x < 10:
return True
# Numbers ending in 0 (except 0) are not palindromes
if x % 10 == 0:
return False
reversed_half = 0
# Reverse only half of the number
while x > reversed_half:
reversed_half = reversed_half * 10 + x % 10
x //= 10
# For even length: x == reversed_half
# For odd length: x == reversed_half // 10
return x == reversed_half or x == reversed_half // 10
# Java version
class Solution {
public boolean isPalindrome(int x) {
if (x < 0 || (x % 10 == 0 && x != 0)) {
return false;
}
int reversedHalf = 0;
while (x > reversedHalf) {
reversedHalf = reversedHalf * 10 + x % 10;
x /= 10;
}
return x == reversedHalf || x == reversedHalf / 10;
}
}
# Problems by Pattern
# Pattern 1: Basic Palindrome Validation
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Valid Palindrome | 125 | Two pointers, character filtering | Easy | Two Pointers |
| Palindrome Number | 9 | Mathematical reversal | Easy | Number Palindrome |
| Palindrome Linked List | 234 | Two pointers, reverse half | Easy | Two Pointers |
| Valid Palindrome II | 680 | Two pointers, one deletion | Easy | Two Pointers |
# Pattern 2: Palindrome Substring Problems
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Longest Palindromic Substring | 5 | Center expansion | Medium | Center Expansion |
| Palindromic Substrings | 647 | Center expansion/DP | Medium | Center Expansion |
| Shortest Palindrome | 214 | KMP/Center expansion | Hard | Center Expansion |
| Longest Palindromic Subsequence | 516 | DP (2D) | Medium | DP Subsequence |
| Palindromic Substring Queries | 1177 | Bit manipulation | Medium | Advanced |
| Minimum Insertion Steps to Make Palindrome | 1312 | DP (edit distance) | Hard | DP Subsequence |
# Pattern 3: Palindrome Construction & Partitioning
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Palindrome Partitioning | 131 | Backtracking + palindrome check | Medium | Backtracking |
| Palindrome Partitioning II | 132 | DP + palindrome preprocessing | Hard | DP + Backtracking |
| Palindrome Pairs | 336 | HashMap + string manipulation | Hard | Advanced |
| Valid Palindrome III | 1216 | DP (k deletions allowed) | Hard | DP Manipulation |
| Break a Palindrome | 1328 | Greedy + string manipulation | Medium | Greedy |
# Pattern 4: Palindrome Manipulation (Insertions/Deletions)
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Minimum Deletions to Make Palindrome | 516* | DP (LPS difference) | Medium | DP Subsequence |
| Minimum Insertions for Palindrome | 1312 | DP (edit distance) | Hard | DP Subsequence |
| Delete Operation for Two Strings | 583* | DP (LCS concept) | Medium | DP Subsequence |
| Longest Palindromic Subsequence II | 1682 | DP with constraints | Medium | DP Subsequence |
| Count Different Palindromic Subsequences | 730 | DP with character counting | Hard | DP Advanced |
# Pattern 5: Advanced Palindrome Problems
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Longest Chunked Palindrome Decomposition | 1147 | Greedy + two pointers | Hard | Advanced |
| Check If Word Is Valid After Substitutions | 1003* | Stack (palindrome-like pattern) | Medium | Advanced |
| Unique Length-3 Palindromic Subsequences | 1930 | Set + character analysis | Medium | Advanced |
| Maximum Product of Length of Palindromic Subsequences | 1930* | Bitmask + DP | Hard | Advanced |
| Find Palindrome With Fixed Length | 2217 | Mathematical construction | Medium | Number Palindrome |
# Pattern 6: Number Palindromes
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Palindrome Number | 9 | Mathematical reversal | Easy | Number Palindrome |
| Largest Palindrome Product | 479 | Mathematical construction | Hard | Number Palindrome |
| Super Palindromes | 906 | Mathematical enumeration | Hard | Number Palindrome |
| Closest Palindrome | 564 | Mathematical analysis | Hard | Number Palindrome |
| Palindromic Prime Numbers | Custom | Number theory | Medium | Number Palindrome |
# Additional Practice Problems
| Problem | LC # | Key Technique | Difficulty | Template |
|---|---|---|---|---|
| Reverse String | 344 | Two pointers basics | Easy | Two Pointers |
| Reverse Words in a String III | 557 | Two pointers per word | Easy | Two Pointers |
| Find the Difference | 389 | Character counting | Easy | Advanced |
| Reverse Only Letters | 917 | Two pointers with filtering | Easy | Two Pointers |
| Valid Parentheses | 20 | Stack (symmetry concept) | Easy | Advanced |
| Longest Palindromic Path in Tree | Custom | Tree DP | Hard | Advanced |
| Palindrome Removal | Custom | Interval DP | Hard | DP Advanced |
| Count Palindromic Paths | Custom | Tree traversal | Medium | Advanced |
# Problem Categories Summary
- Total Problems: 40+ classified problems
- Easy: 8 problems (20%)
- Medium: 20 problems (50%)
- Hard: 12+ problems (30%)
- Most Common Patterns: Center Expansion, Two Pointers, Dynamic Programming
- Advanced Techniques: Backtracking, Bit manipulation, Mathematical construction
# Template Usage Statistics
- Two Pointers: 25% of problems
- Center Expansion: 20% of problems
- Dynamic Programming: 30% of problems
- Backtracking: 10% of problems
- Advanced/Hybrid: 15% of problems
# Pattern Selection Framework
# Decision Flowchart for Palindrome Problems
Problem Analysis Flowchart:
1. Is this a simple validation problem (check if input is palindrome)?
βββ YES β Use Template 1: Two Pointers
β βββ String/Array input β Two pointers from ends
β βββ Linked List input β Two pointers + reverse half
β βββ Integer input β Template 6: Number Palindrome
βββ NO β Continue to 2
2. Do you need to find/count palindromic substrings?
βββ YES β
β βββ Find longest substring β Template 2: Center Expansion
β βββ Count all substrings β Template 2: Center Expansion (optimized)
β βββ Complex substring queries β Template 3: Dynamic Programming
βββ NO β Continue to 3
3. Do you need to partition/construct palindromes?
βββ YES β
β βββ Find all partitions β Template 4: Backtracking
β βββ Minimum cuts needed β Template 3: DP + preprocessing
β βββ Construct specific palindrome β Advanced techniques
βββ NO β Continue to 4
4. Do you need to modify string to make it palindrome?
βββ YES β
β βββ Minimum insertions/deletions β Template 5: DP Subsequence
β βββ With k operations allowed β Template 3: DP with constraints
β βββ Optimal transformation β Advanced DP techniques
βββ NO β Continue to 5
5. Is this a number-based palindrome problem?
βββ YES β Template 6: Number Palindrome
β βββ Check palindrome number β Mathematical reversal
β βββ Generate palindromes β Mathematical construction
β βββ Complex number constraints β Advanced math
βββ NO β Continue to 6
6. Advanced/Complex palindrome problem?
βββ YES β Hybrid approach needed
β βββ Multiple patterns combined β Use multiple templates
β βββ Additional constraints β Modify existing templates
β βββ Novel problem type β Design custom solution
βββ NO β Re-analyze problem requirements
# Template Selection Guide
# When to Use Each Template:
Template 1 - Two Pointers:
- β Simple palindrome validation
- β Problems with character filtering (spaces, punctuation)
- β Linked list palindrome checks
- β When O(1) space is required
- β Need to find all palindromic substrings
- β Complex counting/construction problems
Template 2 - Center Expansion:
- β Find longest palindromic substring
- β Count palindromic substrings
- β When you need actual substring positions
- β O(1) space constraint for counting
- β Subsequence problems (non-contiguous)
- β Complex edit distance scenarios
Template 3 - Dynamic Programming:
- β Count problems with overlapping subproblems
- β Minimum operations to make palindrome
- β Multiple queries on same string
- β Complex constraint combinations
- β Simple validation (overkill)
- β When space is very limited
Template 4 - Backtracking:
- β Generate all palindrome partitions
- β Find specific partition patterns
- β Constraint satisfaction problems
- β When you need all possible solutions
- β Only counting solutions (use DP)
- β Very large input sizes (exponential time)
Template 5 - DP Subsequence:
- β Longest palindromic subsequence
- β Minimum edit operations
- β Character deletion/insertion problems
- β When order matters but contiguity doesnβt
- β Contiguous substring problems
- β Simple validation tasks
Template 6 - Number Palindrome:
- β Integer palindrome validation
- β Mathematical palindrome construction
- β Number theory related problems
- β When string conversion is inefficient
- β String-based palindrome problems
- β Complex character manipulations
# Problem-Solving Strategy
# Step-by-Step Approach:
-
Identify the Core Task:
- Validation vs. Finding vs. Counting vs. Construction
- Single result vs. All possible results
-
Analyze Input Constraints:
- String, Array, Number, or Linked List?
- Size constraints (affects algorithm choice)
- Special characters or filtering needed?
-
Determine Output Requirements:
- Boolean result, count, actual palindromes, or positions?
- Single answer or all possible answers?
-
Choose Base Template:
- Use decision flowchart above
- Consider time/space complexity requirements
-
Adapt Template for Specifics:
- Add filtering logic if needed
- Modify for case sensitivity requirements
- Add memoization if overlapping subproblems exist
-
Optimize if Necessary:
- Space optimization (2D DP β 1D DP)
- Early termination conditions
- Preprocessing for multiple queries
# Common Problem Patterns Recognition
# Pattern Signals:
- βCheck if palindromeβ β Two Pointers
- βLongest palindromic substringβ β Center Expansion
- βCount palindromic substringsβ β Center Expansion or DP
- βAll palindrome partitionsβ β Backtracking
- βMinimum insertions/deletionsβ β DP Subsequence
- βPalindrome numberβ β Number Palindrome
- βCan be made palindrome with k changesβ β DP with constraints
# Summary & Quick Reference
# Complexity Quick Reference
| Template | Time Complexity | Space Complexity | Best For | Notes |
|---|---|---|---|---|
| Two Pointers | O(n) | O(1) | Basic validation | Most efficient for simple checks |
| Center Expansion | O(nΒ²) | O(1) | Substring problems | Good balance of time/space |
| Reverse & Compare | O(n) | O(n) | Simple problems | Easy to implement |
| DP (2D) | O(nΒ²) | O(nΒ²) | Complex counting | Handles overlapping subproblems |
| DP Subsequence | O(nΒ²) | O(nΒ²) β O(n) | Edit distance type | Space optimizable |
| Backtracking | O(nΒ·2^n) | O(n) | Generate partitions | Exponential time |
| Number Palindrome | O(log n) | O(1) | Integer problems | Avoid string conversion |
# Template Quick Reference
| Template | Pattern | Key Code Snippet |
|---|---|---|
| Two Pointers | Validation | while left < right: check s[left] == s[right] |
| Center Expansion | Substring | expand_around_center(left, right) |
| DP Counting | Complex counting | dp[i][j] = (s[i] == s[j]) and dp[i+1][j-1] |
| Backtracking | All partitions | if is_palindrome(start, end): backtrack(end+1) |
| DP Subsequence | LPS/Edit distance | dp[i][j] = dp[i+1][j-1] + 2 if s[i] == s[j] |
| Number Math | Integer palindrome | reversed_half = reversed_half * 10 + x % 10 |
# Common Patterns & Tricks
# Two Pointers Variations
# Basic two pointers
def is_palindrome_basic(s):
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True
# With character filtering
def is_palindrome_alphanumeric(s):
left, right = 0, len(s) - 1
while left < right:
while left < right and not s[left].isalnum():
left += 1
while left < right and not s[right].isalnum():
right -= 1
if s[left].lower() != s[right].lower():
return False
left += 1
right -= 1
return True
# Allow one mismatch
def is_palindrome_one_delete(s):
def helper(left, right, deleted):
while left < right:
if s[left] != s[right]:
if deleted: # Already used one delete
return False
# Try deleting left or right character
return (helper(left + 1, right, True) or
helper(left, right - 1, True))
left += 1
right -= 1
return True
return helper(0, len(s) - 1, False)
# Center Expansion Patterns
# Standard center expansion
def expand_around_center(s, left, right):
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return right - left - 1
# With counting
def count_palindromes_at_center(s, left, right):
count = 0
while left >= 0 and right < len(s) and s[left] == s[right]:
count += 1
left -= 1
right += 1
return count
# For all centers
def find_all_palindromes(s):
palindromes = []
for i in range(len(s)):
# Odd length
left, right = i, i
while left >= 0 and right < len(s) and s[left] == s[right]:
palindromes.append(s[left:right+1])
left -= 1
right += 1
# Even length
left, right = i, i + 1
while left >= 0 and right < len(s) and s[left] == s[right]:
palindromes.append(s[left:right+1])
left -= 1
right += 1
return palindromes
# DP Optimization Patterns
# Space optimization: 2D DP to 1D
def longest_palindromic_subsequence_1D(s):
n = len(s)
dp = [1] * n # dp[j] represents length for current i to j
for i in range(n - 2, -1, -1):
prev = 0 # dp[i+1][j-1]
for j in range(i + 1, n):
temp = dp[j] # Save current dp[j] for next iteration's prev
if s[i] == s[j]:
dp[j] = prev + 2
else:
dp[j] = max(dp[j], dp[j-1])
prev = temp
return dp[n-1]
# Preprocessing palindrome table
def precompute_palindromes(s):
n = len(s)
is_palin = [[False] * n for _ in range(n)]
# Single characters
for i in range(n):
is_palin[i][i] = True
# Two characters
for i in range(n - 1):
is_palin[i][i+1] = (s[i] == s[i+1])
# Three+ characters
for length in range(3, n + 1):
for i in range(n - length + 1):
j = i + length - 1
is_palin[i][j] = (s[i] == s[j] and is_palin[i+1][j-1])
return is_palin
# Problem-Solving Steps
-
Problem Analysis
- Read problem carefully and identify key requirements
- Determine if itβs validation, finding, counting, or construction
- Note constraints (case sensitivity, special characters, etc.)
-
Pattern Recognition
- Use the pattern signals to identify the likely approach
- Check the decision flowchart for template selection
- Consider hybrid approaches for complex problems
-
Template Selection
- Choose the most appropriate template based on requirements
- Consider time/space complexity constraints
- Plan for edge cases and optimizations
-
Implementation Strategy
- Start with the basic template structure
- Add problem-specific modifications
- Handle edge cases (empty string, single character, etc.)
-
Testing & Optimization
- Test with provided examples
- Consider edge cases: ββ, βaβ, βabβ, βabaβ
- Optimize space if needed (2D DP β 1D DP)
# Common Mistakes & Tips
Common Mistakes:
- Off-by-one errors in center expansion bounds checking
- Case sensitivity not handled when problem requires it
- Character filtering logic incorrect for alphanumeric checks
- Space complexity not optimized when required
- Integer overflow in number palindrome problems
- Backtracking without proper base case or pruning
- DP state definition incorrect for subsequence problems
Best Practices:
- Always check bounds before accessing array elements
- Handle empty input and single character cases separately
- Use consistent naming for left/right or start/end pointers
- Comment your approach clearly, especially for DP transitions
- Consider space optimization after getting correct solution
- Test edge cases thoroughly before submitting
- Use helper functions to keep main logic clean and readable
# Interview Tips
-
Start with Clarification
- Ask about case sensitivity requirements
- Clarify if spaces/punctuation should be ignored
- Understand the expected output format
-
Discuss Approach
- Explain your chosen template and reasoning
- Mention time/space complexity upfront
- Discuss potential optimizations
-
Code Systematically
- Start with basic structure, then add details
- Handle edge cases explicitly
- Use meaningful variable names
-
Test Thoroughly
- Walk through examples step by step
- Test edge cases: ββ, βaβ, βabβ, βabaβ, βabcbaβ
- Verify your complexity analysis
-
Common Follow-ups
- βCan you optimize space complexity?β
- βWhat if we allow k character mismatches?β
- βHow would you handle very large inputs?β
- βCan you solve it without extra space?β
# Related Topics
- Two Pointers: General two-pointer techniques and applications
- Dynamic Programming: Edit distance, longest common subsequence
- String Algorithms: Pattern matching, string manipulation
- Backtracking: Constraint satisfaction, combinatorial problems
- Hash Tables: Character frequency counting, anagram problems
- Sliding Window: Substring problems with constraints
- Tree Algorithms: Path problems, symmetric tree validation