# Palindrome (ε›žζ–‡)

# Overview

Palindrome is a sequence that reads the same forward and backward. It’s a fundamental concept in string manipulation and array processing, commonly appearing in coding interviews.

# Key Properties

  • Time Complexity: O(n) for basic operations, O(nΒ²) for substring problems
  • Space Complexity: O(1) for two-pointer approach, O(n) for recursive/DP solutions
  • Core Idea: Compare characters/elements from both ends moving toward the center
  • When to Use: String validation, substring problems, number manipulation, partitioning

# Problem Categories

# Pattern 1: Basic Palindrome Validation

  • Description: Check if a given string/array/number is a palindrome
  • Examples: LC 9, 125, 234 - Valid Palindrome, Palindrome Number, Palindrome Linked List
  • Pattern: Two pointers from ends, or reverse and compare

# Pattern 2: Palindrome Substring Problems

  • Description: Find longest palindromic substring or count palindromic substrings
  • Examples: LC 5, 647, 214 - Longest Palindromic Substring, Palindromic Substrings
  • Pattern: Center expansion or dynamic programming

# Pattern 3: Palindrome Construction & Partitioning

  • Description: Break string into palindromic parts or construct palindromes
  • Examples: LC 131, 132, 336 - Palindrome Partitioning I/II, Palindrome Pairs
  • Pattern: Backtracking with palindrome validation, dynamic programming

# Pattern 4: Palindrome Manipulation

  • Description: Transform strings to create palindromes (insertions, deletions)
  • Examples: LC 516, 1312, 1332 - Longest Palindromic Subsequence, Minimum Insertions
  • Pattern: Dynamic programming with edit distance concepts

# Pattern 5: Advanced Palindrome Problems

  • Description: Complex palindrome problems with additional constraints
  • Examples: LC 1147, 1177, 1930 - Longest Chunked Palindrome, Can Make Palindrome
  • Pattern: Sliding window, hash tables, bit manipulation

# Pattern 6: Number Palindromes

  • Description: Palindrome problems involving integers and mathematical operations
  • Examples: LC 9, 479, 564 - Palindrome Number, Largest Palindrome Product
  • Pattern: Mathematical manipulation, string conversion

# References

# Templates & Algorithms

# Template Comparison Table

Template Type Use Case Time Complexity When to Use
Two Pointers Basic validation O(n) Simple palindrome check
Center Expansion Find longest substring O(nΒ²) Substring problems
Reverse & Compare Simple check O(n) When space is not a constraint
DP (2D) Complex substring counting O(nΒ²) Multiple subproblems
Recursive + Memo Subsequence problems O(nΒ²) Overlapping subproblems
Backtracking Partitioning O(2^n) Generate all partitions

# Template 1: Two Pointers (Most Common)

def is_palindrome_two_pointers(s):
    """
    Basic palindrome check using two pointers
    Time: O(n), Space: O(1)
    """
    left, right = 0, len(s) - 1
    
    while left < right:
        # Skip non-alphanumeric characters (for valid palindrome problems)
        while left < right and not s[left].isalnum():
            left += 1
        while left < right and not s[right].isalnum():
            right -= 1
            
        # Compare characters (case-insensitive)
        if s[left].lower() != s[right].lower():
            return False
            
        left += 1
        right -= 1
    
    return True

# Java version
class Solution {
    public boolean isPalindrome(String s) {
        int left = 0, right = s.length() - 1;
        
        while (left < right) {
            while (left < right && !Character.isLetterOrDigit(s.charAt(left))) {
                left++;
            }
            while (left < right && !Character.isLetterOrDigit(s.charAt(right))) {
                right--;
            }
            
            if (Character.toLowerCase(s.charAt(left)) != 
                Character.toLowerCase(s.charAt(right))) {
                return false;
            }
            
            left++;
            right--;
        }
        
        return true;
    }
}

# Template 2: Center Expansion (Substring Problems)

def longest_palindromic_substring(s):
    """
    Find longest palindromic substring using center expansion
    Time: O(nΒ²), Space: O(1)
    """
    if not s:
        return ""
    
    start, max_len = 0, 1
    
    def expand_around_center(left, right):
        # Expand while characters match
        while left >= 0 and right < len(s) and s[left] == s[right]:
            left -= 1
            right += 1
        return right - left - 1  # Length of palindrome
    
    for i in range(len(s)):
        # Check for odd-length palindromes (center at i)
        len1 = expand_around_center(i, i)
        # Check for even-length palindromes (center between i and i+1)
        len2 = expand_around_center(i, i + 1)
        
        current_max = max(len1, len2)
        if current_max > max_len:
            max_len = current_max
            start = i - (current_max - 1) // 2
    
    return s[start:start + max_len]

# Java version
class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) return "";
        
        int start = 0, end = 0;
        
        for (int i = 0; i < s.length(); i++) {
            int len1 = expandAroundCenter(s, i, i);     // odd length
            int len2 = expandAroundCenter(s, i, i + 1); // even length
            int len = Math.max(len1, len2);
            
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        
        return s.substring(start, end + 1);
    }
    
    private int expandAroundCenter(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            left--;
            right++;
        }
        return right - left - 1;
    }
}

# Template 3: Dynamic Programming (Complex Counting)

def count_palindromic_substrings(s):
    """
    Count all palindromic substrings using DP
    Time: O(nΒ²), Space: O(nΒ²)
    """
    n = len(s)
    # dp[i][j] = True if s[i:j+1] is palindrome
    dp = [[False] * n for _ in range(n)]
    count = 0
    
    # Single characters are palindromes
    for i in range(n):
        dp[i][i] = True
        count += 1
    
    # Check for palindromes of length 2
    for i in range(n - 1):
        if s[i] == s[i + 1]:
            dp[i][i + 1] = True
            count += 1
    
    # Check for palindromes of length 3+
    for length in range(3, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
            
            # Check if s[i:j+1] is palindrome
            if s[i] == s[j] and dp[i + 1][j - 1]:
                dp[i][j] = True
                count += 1
    
    return count

# Space-optimized version using center expansion
def count_palindromic_substrings_optimized(s):
    """
    Time: O(nΒ²), Space: O(1)
    """
    count = 0
    
    def expand_and_count(left, right):
        nonlocal count
        while left >= 0 and right < len(s) and s[left] == s[right]:
            count += 1
            left -= 1
            right += 1
    
    for i in range(len(s)):
        # Odd length palindromes
        expand_and_count(i, i)
        # Even length palindromes
        expand_and_count(i, i + 1)
    
    return count

# Template 4: Backtracking (Partitioning)

def palindrome_partitioning(s):
    """
    Find all palindrome partitions using backtracking
    Time: O(n * 2^n), Space: O(n)
    """
    result = []
    current_partition = []
    
    def is_palindrome(start, end):
        while start < end:
            if s[start] != s[end]:
                return False
            start += 1
            end -= 1
        return True
    
    def backtrack(start):
        # Base case: reached end of string
        if start >= len(s):
            result.append(current_partition[:])
            return
        
        # Try all possible endings for current substring
        for end in range(start, len(s)):
            # If current substring is palindrome
            if is_palindrome(start, end):
                current_partition.append(s[start:end + 1])
                backtrack(end + 1)
                current_partition.pop()
    
    backtrack(0)
    return result

# Optimized with memoization
def palindrome_partitioning_memo(s):
    """
    With palindrome check memoization
    """
    n = len(s)
    # Precompute palindrome checks
    is_palin = [[False] * n for _ in range(n)]
    
    # Fill palindrome table
    for i in range(n):
        is_palin[i][i] = True
    
    for i in range(n - 1):
        is_palin[i][i + 1] = (s[i] == s[i + 1])
    
    for length in range(3, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
            is_palin[i][j] = (s[i] == s[j] and is_palin[i + 1][j - 1])
    
    result = []
    current_partition = []
    
    def backtrack(start):
        if start >= n:
            result.append(current_partition[:])
            return
        
        for end in range(start, n):
            if is_palin[start][end]:
                current_partition.append(s[start:end + 1])
                backtrack(end + 1)
                current_partition.pop()
    
    backtrack(0)
    return result

# Template 5: Longest Palindromic Subsequence (DP)

def longest_palindromic_subsequence(s):
    """
    Find length of longest palindromic subsequence using DP
    Time: O(nΒ²), Space: O(nΒ²)
    """
    n = len(s)
    # dp[i][j] = length of LPS in s[i:j+1]
    dp = [[0] * n for _ in range(n)]
    
    # Single characters have LPS length 1
    for i in range(n):
        dp[i][i] = 1
    
    # Fill for substrings of length 2+
    for length in range(2, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
            
            if s[i] == s[j]:
                dp[i][j] = dp[i + 1][j - 1] + 2
            else:
                dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
    
    return dp[0][n - 1]

# Space-optimized version
def longest_palindromic_subsequence_optimized(s):
    """
    Time: O(nΒ²), Space: O(n)
    """
    n = len(s)
    dp = [1] * n
    
    for i in range(n - 2, -1, -1):
        prev = 0
        for j in range(i + 1, n):
            temp = dp[j]
            if s[i] == s[j]:
                dp[j] = prev + 2
            else:
                dp[j] = max(dp[j], dp[j - 1])
            prev = temp
    
    return dp[n - 1]

# Template 6: Number Palindrome

def is_palindrome_number(x):
    """
    Check if integer is palindrome without converting to string
    Time: O(log x), Space: O(1)
    """
    # Negative numbers are not palindromes
    if x < 0:
        return False
    
    # Single digit numbers are palindromes
    if x < 10:
        return True
    
    # Numbers ending in 0 (except 0) are not palindromes
    if x % 10 == 0:
        return False
    
    reversed_half = 0
    
    # Reverse only half of the number
    while x > reversed_half:
        reversed_half = reversed_half * 10 + x % 10
        x //= 10
    
    # For even length: x == reversed_half
    # For odd length: x == reversed_half // 10
    return x == reversed_half or x == reversed_half // 10

# Java version
class Solution {
    public boolean isPalindrome(int x) {
        if (x < 0 || (x % 10 == 0 && x != 0)) {
            return false;
        }
        
        int reversedHalf = 0;
        while (x > reversedHalf) {
            reversedHalf = reversedHalf * 10 + x % 10;
            x /= 10;
        }
        
        return x == reversedHalf || x == reversedHalf / 10;
    }
}

# Problems by Pattern

# Pattern 1: Basic Palindrome Validation

Problem LC # Key Technique Difficulty Template
Valid Palindrome 125 Two pointers, character filtering Easy Two Pointers
Palindrome Number 9 Mathematical reversal Easy Number Palindrome
Palindrome Linked List 234 Two pointers, reverse half Easy Two Pointers
Valid Palindrome II 680 Two pointers, one deletion Easy Two Pointers

# Pattern 2: Palindrome Substring Problems

Problem LC # Key Technique Difficulty Template
Longest Palindromic Substring 5 Center expansion Medium Center Expansion
Palindromic Substrings 647 Center expansion/DP Medium Center Expansion
Shortest Palindrome 214 KMP/Center expansion Hard Center Expansion
Longest Palindromic Subsequence 516 DP (2D) Medium DP Subsequence
Palindromic Substring Queries 1177 Bit manipulation Medium Advanced
Minimum Insertion Steps to Make Palindrome 1312 DP (edit distance) Hard DP Subsequence

# Pattern 3: Palindrome Construction & Partitioning

Problem LC # Key Technique Difficulty Template
Palindrome Partitioning 131 Backtracking + palindrome check Medium Backtracking
Palindrome Partitioning II 132 DP + palindrome preprocessing Hard DP + Backtracking
Palindrome Pairs 336 HashMap + string manipulation Hard Advanced
Valid Palindrome III 1216 DP (k deletions allowed) Hard DP Manipulation
Break a Palindrome 1328 Greedy + string manipulation Medium Greedy

# Pattern 4: Palindrome Manipulation (Insertions/Deletions)

Problem LC # Key Technique Difficulty Template
Minimum Deletions to Make Palindrome 516* DP (LPS difference) Medium DP Subsequence
Minimum Insertions for Palindrome 1312 DP (edit distance) Hard DP Subsequence
Delete Operation for Two Strings 583* DP (LCS concept) Medium DP Subsequence
Longest Palindromic Subsequence II 1682 DP with constraints Medium DP Subsequence
Count Different Palindromic Subsequences 730 DP with character counting Hard DP Advanced

# Pattern 5: Advanced Palindrome Problems

Problem LC # Key Technique Difficulty Template
Longest Chunked Palindrome Decomposition 1147 Greedy + two pointers Hard Advanced
Check If Word Is Valid After Substitutions 1003* Stack (palindrome-like pattern) Medium Advanced
Unique Length-3 Palindromic Subsequences 1930 Set + character analysis Medium Advanced
Maximum Product of Length of Palindromic Subsequences 1930* Bitmask + DP Hard Advanced
Find Palindrome With Fixed Length 2217 Mathematical construction Medium Number Palindrome

# Pattern 6: Number Palindromes

Problem LC # Key Technique Difficulty Template
Palindrome Number 9 Mathematical reversal Easy Number Palindrome
Largest Palindrome Product 479 Mathematical construction Hard Number Palindrome
Super Palindromes 906 Mathematical enumeration Hard Number Palindrome
Closest Palindrome 564 Mathematical analysis Hard Number Palindrome
Palindromic Prime Numbers Custom Number theory Medium Number Palindrome

# Additional Practice Problems

Problem LC # Key Technique Difficulty Template
Reverse String 344 Two pointers basics Easy Two Pointers
Reverse Words in a String III 557 Two pointers per word Easy Two Pointers
Find the Difference 389 Character counting Easy Advanced
Reverse Only Letters 917 Two pointers with filtering Easy Two Pointers
Valid Parentheses 20 Stack (symmetry concept) Easy Advanced
Longest Palindromic Path in Tree Custom Tree DP Hard Advanced
Palindrome Removal Custom Interval DP Hard DP Advanced
Count Palindromic Paths Custom Tree traversal Medium Advanced

# Problem Categories Summary

  • Total Problems: 40+ classified problems
  • Easy: 8 problems (20%)
  • Medium: 20 problems (50%)
  • Hard: 12+ problems (30%)
  • Most Common Patterns: Center Expansion, Two Pointers, Dynamic Programming
  • Advanced Techniques: Backtracking, Bit manipulation, Mathematical construction

# Template Usage Statistics

  • Two Pointers: 25% of problems
  • Center Expansion: 20% of problems
  • Dynamic Programming: 30% of problems
  • Backtracking: 10% of problems
  • Advanced/Hybrid: 15% of problems

# Pattern Selection Framework

# Decision Flowchart for Palindrome Problems

Problem Analysis Flowchart:

1. Is this a simple validation problem (check if input is palindrome)?
   β”œβ”€β”€ YES β†’ Use Template 1: Two Pointers
   β”‚   β”œβ”€β”€ String/Array input β†’ Two pointers from ends
   β”‚   β”œβ”€β”€ Linked List input β†’ Two pointers + reverse half
   β”‚   └── Integer input β†’ Template 6: Number Palindrome
   └── NO β†’ Continue to 2

2. Do you need to find/count palindromic substrings?
   β”œβ”€β”€ YES β†’ 
   β”‚   β”œβ”€β”€ Find longest substring β†’ Template 2: Center Expansion
   β”‚   β”œβ”€β”€ Count all substrings β†’ Template 2: Center Expansion (optimized)
   β”‚   └── Complex substring queries β†’ Template 3: Dynamic Programming
   └── NO β†’ Continue to 3

3. Do you need to partition/construct palindromes?
   β”œβ”€β”€ YES β†’
   β”‚   β”œβ”€β”€ Find all partitions β†’ Template 4: Backtracking
   β”‚   β”œβ”€β”€ Minimum cuts needed β†’ Template 3: DP + preprocessing
   β”‚   └── Construct specific palindrome β†’ Advanced techniques
   └── NO β†’ Continue to 4

4. Do you need to modify string to make it palindrome?
   β”œβ”€β”€ YES β†’
   β”‚   β”œβ”€β”€ Minimum insertions/deletions β†’ Template 5: DP Subsequence
   β”‚   β”œβ”€β”€ With k operations allowed β†’ Template 3: DP with constraints
   β”‚   └── Optimal transformation β†’ Advanced DP techniques
   └── NO β†’ Continue to 5

5. Is this a number-based palindrome problem?
   β”œβ”€β”€ YES β†’ Template 6: Number Palindrome
   β”‚   β”œβ”€β”€ Check palindrome number β†’ Mathematical reversal
   β”‚   β”œβ”€β”€ Generate palindromes β†’ Mathematical construction
   β”‚   └── Complex number constraints β†’ Advanced math
   └── NO β†’ Continue to 6

6. Advanced/Complex palindrome problem?
   β”œβ”€β”€ YES β†’ Hybrid approach needed
   β”‚   β”œβ”€β”€ Multiple patterns combined β†’ Use multiple templates
   β”‚   β”œβ”€β”€ Additional constraints β†’ Modify existing templates
   β”‚   └── Novel problem type β†’ Design custom solution
   └── NO β†’ Re-analyze problem requirements

# Template Selection Guide

# When to Use Each Template:

Template 1 - Two Pointers:

  • βœ… Simple palindrome validation
  • βœ… Problems with character filtering (spaces, punctuation)
  • βœ… Linked list palindrome checks
  • βœ… When O(1) space is required
  • ❌ Need to find all palindromic substrings
  • ❌ Complex counting/construction problems

Template 2 - Center Expansion:

  • βœ… Find longest palindromic substring
  • βœ… Count palindromic substrings
  • βœ… When you need actual substring positions
  • βœ… O(1) space constraint for counting
  • ❌ Subsequence problems (non-contiguous)
  • ❌ Complex edit distance scenarios

Template 3 - Dynamic Programming:

  • βœ… Count problems with overlapping subproblems
  • βœ… Minimum operations to make palindrome
  • βœ… Multiple queries on same string
  • βœ… Complex constraint combinations
  • ❌ Simple validation (overkill)
  • ❌ When space is very limited

Template 4 - Backtracking:

  • βœ… Generate all palindrome partitions
  • βœ… Find specific partition patterns
  • βœ… Constraint satisfaction problems
  • βœ… When you need all possible solutions
  • ❌ Only counting solutions (use DP)
  • ❌ Very large input sizes (exponential time)

Template 5 - DP Subsequence:

  • βœ… Longest palindromic subsequence
  • βœ… Minimum edit operations
  • βœ… Character deletion/insertion problems
  • βœ… When order matters but contiguity doesn’t
  • ❌ Contiguous substring problems
  • ❌ Simple validation tasks

Template 6 - Number Palindrome:

  • βœ… Integer palindrome validation
  • βœ… Mathematical palindrome construction
  • βœ… Number theory related problems
  • βœ… When string conversion is inefficient
  • ❌ String-based palindrome problems
  • ❌ Complex character manipulations

# Problem-Solving Strategy

# Step-by-Step Approach:

  1. Identify the Core Task:

    • Validation vs. Finding vs. Counting vs. Construction
    • Single result vs. All possible results
  2. Analyze Input Constraints:

    • String, Array, Number, or Linked List?
    • Size constraints (affects algorithm choice)
    • Special characters or filtering needed?
  3. Determine Output Requirements:

    • Boolean result, count, actual palindromes, or positions?
    • Single answer or all possible answers?
  4. Choose Base Template:

    • Use decision flowchart above
    • Consider time/space complexity requirements
  5. Adapt Template for Specifics:

    • Add filtering logic if needed
    • Modify for case sensitivity requirements
    • Add memoization if overlapping subproblems exist
  6. Optimize if Necessary:

    • Space optimization (2D DP β†’ 1D DP)
    • Early termination conditions
    • Preprocessing for multiple queries

# Common Problem Patterns Recognition

# Pattern Signals:

  • β€œCheck if palindrome” β†’ Two Pointers
  • β€œLongest palindromic substring” β†’ Center Expansion
  • β€œCount palindromic substrings” β†’ Center Expansion or DP
  • β€œAll palindrome partitions” β†’ Backtracking
  • β€œMinimum insertions/deletions” β†’ DP Subsequence
  • β€œPalindrome number” β†’ Number Palindrome
  • β€œCan be made palindrome with k changes” β†’ DP with constraints

# Summary & Quick Reference

# Complexity Quick Reference

Template Time Complexity Space Complexity Best For Notes
Two Pointers O(n) O(1) Basic validation Most efficient for simple checks
Center Expansion O(nΒ²) O(1) Substring problems Good balance of time/space
Reverse & Compare O(n) O(n) Simple problems Easy to implement
DP (2D) O(nΒ²) O(nΒ²) Complex counting Handles overlapping subproblems
DP Subsequence O(nΒ²) O(nΒ²) β†’ O(n) Edit distance type Space optimizable
Backtracking O(nΒ·2^n) O(n) Generate partitions Exponential time
Number Palindrome O(log n) O(1) Integer problems Avoid string conversion

# Template Quick Reference

Template Pattern Key Code Snippet
Two Pointers Validation while left < right: check s[left] == s[right]
Center Expansion Substring expand_around_center(left, right)
DP Counting Complex counting dp[i][j] = (s[i] == s[j]) and dp[i+1][j-1]
Backtracking All partitions if is_palindrome(start, end): backtrack(end+1)
DP Subsequence LPS/Edit distance dp[i][j] = dp[i+1][j-1] + 2 if s[i] == s[j]
Number Math Integer palindrome reversed_half = reversed_half * 10 + x % 10

# Common Patterns & Tricks

# Two Pointers Variations

# Basic two pointers
def is_palindrome_basic(s):
    left, right = 0, len(s) - 1
    while left < right:
        if s[left] != s[right]:
            return False
        left += 1
        right -= 1
    return True

# With character filtering
def is_palindrome_alphanumeric(s):
    left, right = 0, len(s) - 1
    while left < right:
        while left < right and not s[left].isalnum():
            left += 1
        while left < right and not s[right].isalnum():
            right -= 1
        if s[left].lower() != s[right].lower():
            return False
        left += 1
        right -= 1
    return True

# Allow one mismatch
def is_palindrome_one_delete(s):
    def helper(left, right, deleted):
        while left < right:
            if s[left] != s[right]:
                if deleted:  # Already used one delete
                    return False
                # Try deleting left or right character
                return (helper(left + 1, right, True) or 
                       helper(left, right - 1, True))
            left += 1
            right -= 1
        return True
    return helper(0, len(s) - 1, False)

# Center Expansion Patterns

# Standard center expansion
def expand_around_center(s, left, right):
    while left >= 0 and right < len(s) and s[left] == s[right]:
        left -= 1
        right += 1
    return right - left - 1

# With counting
def count_palindromes_at_center(s, left, right):
    count = 0
    while left >= 0 and right < len(s) and s[left] == s[right]:
        count += 1
        left -= 1
        right += 1
    return count

# For all centers
def find_all_palindromes(s):
    palindromes = []
    for i in range(len(s)):
        # Odd length
        left, right = i, i
        while left >= 0 and right < len(s) and s[left] == s[right]:
            palindromes.append(s[left:right+1])
            left -= 1
            right += 1
        # Even length
        left, right = i, i + 1
        while left >= 0 and right < len(s) and s[left] == s[right]:
            palindromes.append(s[left:right+1])
            left -= 1
            right += 1
    return palindromes

# DP Optimization Patterns

# Space optimization: 2D DP to 1D
def longest_palindromic_subsequence_1D(s):
    n = len(s)
    dp = [1] * n  # dp[j] represents length for current i to j
    
    for i in range(n - 2, -1, -1):
        prev = 0  # dp[i+1][j-1]
        for j in range(i + 1, n):
            temp = dp[j]  # Save current dp[j] for next iteration's prev
            if s[i] == s[j]:
                dp[j] = prev + 2
            else:
                dp[j] = max(dp[j], dp[j-1])
            prev = temp
    
    return dp[n-1]

# Preprocessing palindrome table
def precompute_palindromes(s):
    n = len(s)
    is_palin = [[False] * n for _ in range(n)]
    
    # Single characters
    for i in range(n):
        is_palin[i][i] = True
    
    # Two characters
    for i in range(n - 1):
        is_palin[i][i+1] = (s[i] == s[i+1])
    
    # Three+ characters
    for length in range(3, n + 1):
        for i in range(n - length + 1):
            j = i + length - 1
            is_palin[i][j] = (s[i] == s[j] and is_palin[i+1][j-1])
    
    return is_palin

# Problem-Solving Steps

  1. Problem Analysis

    • Read problem carefully and identify key requirements
    • Determine if it’s validation, finding, counting, or construction
    • Note constraints (case sensitivity, special characters, etc.)
  2. Pattern Recognition

    • Use the pattern signals to identify the likely approach
    • Check the decision flowchart for template selection
    • Consider hybrid approaches for complex problems
  3. Template Selection

    • Choose the most appropriate template based on requirements
    • Consider time/space complexity constraints
    • Plan for edge cases and optimizations
  4. Implementation Strategy

    • Start with the basic template structure
    • Add problem-specific modifications
    • Handle edge cases (empty string, single character, etc.)
  5. Testing & Optimization

    • Test with provided examples
    • Consider edge cases: β€œβ€, β€œa”, β€œab”, β€œaba”
    • Optimize space if needed (2D DP β†’ 1D DP)

# Common Mistakes & Tips

Common Mistakes:

  • Off-by-one errors in center expansion bounds checking
  • Case sensitivity not handled when problem requires it
  • Character filtering logic incorrect for alphanumeric checks
  • Space complexity not optimized when required
  • Integer overflow in number palindrome problems
  • Backtracking without proper base case or pruning
  • DP state definition incorrect for subsequence problems

Best Practices:

  • Always check bounds before accessing array elements
  • Handle empty input and single character cases separately
  • Use consistent naming for left/right or start/end pointers
  • Comment your approach clearly, especially for DP transitions
  • Consider space optimization after getting correct solution
  • Test edge cases thoroughly before submitting
  • Use helper functions to keep main logic clean and readable

# Interview Tips

  1. Start with Clarification

    • Ask about case sensitivity requirements
    • Clarify if spaces/punctuation should be ignored
    • Understand the expected output format
  2. Discuss Approach

    • Explain your chosen template and reasoning
    • Mention time/space complexity upfront
    • Discuss potential optimizations
  3. Code Systematically

    • Start with basic structure, then add details
    • Handle edge cases explicitly
    • Use meaningful variable names
  4. Test Thoroughly

    • Walk through examples step by step
    • Test edge cases: β€œβ€, β€œa”, β€œab”, β€œaba”, β€œabcba”
    • Verify your complexity analysis
  5. Common Follow-ups

    • β€œCan you optimize space complexity?”
    • β€œWhat if we allow k character mismatches?”
    • β€œHow would you handle very large inputs?”
    • β€œCan you solve it without extra space?”
  • Two Pointers: General two-pointer techniques and applications
  • Dynamic Programming: Edit distance, longest common subsequence
  • String Algorithms: Pattern matching, string manipulation
  • Backtracking: Constraint satisfaction, combinatorial problems
  • Hash Tables: Character frequency counting, anagram problems
  • Sliding Window: Substring problems with constraints
  • Tree Algorithms: Path problems, symmetric tree validation