# Matrix Data Structure

# Overview

Matrix is a 2-dimensional array data structure that stores elements in rows and columns. It’s fundamental for solving problems involving grids, images, game boards, and mathematical computations.

# Key Properties

  • Time Complexity:
    • Access: O(1)
    • Traversal: O(m*n) where m=rows, n=columns
    • Search: O(mn) for unsorted, O(log(mn)) for sorted matrices
  • Space Complexity: O(m*n) for storage
  • Core Idea: Elements accessed via [row][column] indexing
  • When to Use: Grid-based problems, 2D transformations, path finding, dynamic programming on grids

# Problem Categories

# Pattern 1: Matrix Traversal

  • Description: Navigate through matrix elements using specific patterns (spiral, diagonal, zigzag)
  • Examples: LC 54, 59, 498, 885
  • Key Pattern: Boundary-based movement with direction changes

# Pattern 2: Matrix Transformation

  • Description: Rotate, transpose, or flip matrices in-place or create new ones
  • Examples: LC 48, 867, 189, 1886
  • Key Pattern: Mathematical coordinate mapping
  • Description: Find elements in sorted or partially sorted 2D matrices
  • Examples: LC 74, 240, 378, 668
  • Key Pattern: Binary search variants or elimination-based search

# Pattern 4: Matrix Modification

  • Description: Update matrix elements based on conditions (set zeros, smooth values)
  • Examples: LC 73, 661, 289, 1314
  • Key Pattern: Two-pass or auxiliary space approaches

# Pattern 5: Matrix Multiplication & Operations

  • Description: Mathematical operations between matrices or matrix computations
  • Examples: LC 311, 348, 1572, 1351
  • Key Pattern: Triple nested loops for multiplication, optimization for sparse matrices

# Pattern 6: Matrix Path & Dynamic Programming

  • Description: Find paths, count paths, or optimize values through matrix traversal
  • Examples: LC 62, 63, 64, 120, 931
  • Key Pattern: DP state transitions based on adjacent cells

# Templates & Algorithms

# Template Comparison Table

Template Type Use Case Key Structure When to Use
Matrix Traversal Spiral, diagonal movement Boundary tracking + direction vectors Ordered element processing
Matrix Transformation Rotate, transpose, flip Mathematical coordinate mapping In-place modifications
Matrix Search Find target in sorted matrix Binary search or elimination Sorted/partially sorted matrices
Matrix Modification Set zeros, smooth values Two-pass or auxiliary tracking Conditional element updates
Matrix Multiplication Dot product operations Triple nested loops Mathematical computations
Matrix Path DP Path counting, min/max path DP state transitions Optimization problems on grids

# Universal Matrix Template

def solve_matrix_problem(matrix):
    if not matrix or not matrix[0]:
        return default_result
    
    rows, cols = len(matrix), len(matrix[0])
    
    # Initialize result structure
    result = initialize_result(rows, cols)
    
    # Main processing loop
    for i in range(rows):
        for j in range(cols):
            # Process current cell
            process_cell(matrix, i, j, result)
    
    return result

def process_cell(matrix, row, col, result):
    # Template for cell processing
    # - Check boundaries
    # - Apply logic
    # - Update result
    pass

# Pattern-Specific Templates

# Template 1: Matrix Traversal (Spiral/Diagonal)

def spiral_traversal(matrix):
    if not matrix or not matrix[0]:
        return []
    
    result = []
    rows, cols = len(matrix), len(matrix[0])
    
    # Define boundaries
    top, bottom = 0, rows - 1
    left, right = 0, cols - 1
    
    while top <= bottom and left <= right:
        # Right movement
        for j in range(left, right + 1):
            result.append(matrix[top][j])
        top += 1
        
        # Down movement  
        for i in range(top, bottom + 1):
            result.append(matrix[i][right])
        right -= 1
        
        # Left movement (if still valid row)
        if top <= bottom:
            for j in range(right, left - 1, -1):
                result.append(matrix[bottom][j])
            bottom -= 1
        
        # Up movement (if still valid column)
        if left <= right:
            for i in range(bottom, top - 1, -1):
                result.append(matrix[i][left])
            left += 1
    
    return result

# Template 2: Matrix Transformation (Rotate/Transpose)

def rotate_matrix_90_clockwise(matrix):
    """
    Two-step approach: Transpose + Reverse rows
    """
    n = len(matrix)
    
    # Step 1: Transpose matrix (swap matrix[i][j] with matrix[j][i])
    for i in range(n):
        for j in range(i + 1, n):  # Start from i+1 to avoid double swap
            matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
    
    # Step 2: Reverse each row
    for i in range(n):
        matrix[i].reverse()
    
    return matrix

def transpose_matrix(matrix):
    """
    Create new matrix with swapped dimensions
    """
    if not matrix or not matrix[0]:
        return []
    
    rows, cols = len(matrix), len(matrix[0])
    result = [[0] * rows for _ in range(cols)]
    
    for i in range(rows):
        for j in range(cols):
            result[j][i] = matrix[i][j]
    
    return result
def search_matrix_binary(matrix, target):
    """
    Binary search on sorted matrix (treat as 1D array)
    """
    if not matrix or not matrix[0]:
        return False
    
    rows, cols = len(matrix), len(matrix[0])
    left, right = 0, rows * cols - 1
    
    while left <= right:
        mid = (left + right) // 2
        mid_row, mid_col = mid // cols, mid % cols
        mid_val = matrix[mid_row][mid_col]
        
        if mid_val == target:
            return True
        elif mid_val < target:
            left = mid + 1
        else:
            right = mid - 1
    
    return False

def search_matrix_elimination(matrix, target):
    """
    Search in row-wise and column-wise sorted matrix
    Start from top-right or bottom-left corner
    """
    if not matrix or not matrix[0]:
        return False
    
    rows, cols = len(matrix), len(matrix[0])
    row, col = 0, cols - 1  # Start from top-right
    
    while row < rows and col >= 0:
        if matrix[row][col] == target:
            return True
        elif matrix[row][col] > target:
            col -= 1  # Move left
        else:
            row += 1  # Move down
    
    return False

# Template 4: Matrix Modification

def set_matrix_zeros(matrix):
    """
    Set entire row and column to zero if any element is zero
    """
    if not matrix or not matrix[0]:
        return
    
    rows, cols = len(matrix), len(matrix[0])
    
    # Use first row and column as markers
    first_row_zero = any(matrix[0][j] == 0 for j in range(cols))
    first_col_zero = any(matrix[i][0] == 0 for i in range(rows))
    
    # Mark zeros in first row and column
    for i in range(1, rows):
        for j in range(1, cols):
            if matrix[i][j] == 0:
                matrix[0][j] = 0  # Mark column
                matrix[i][0] = 0  # Mark row
    
    # Set zeros based on markers
    for i in range(1, rows):
        for j in range(1, cols):
            if matrix[0][j] == 0 or matrix[i][0] == 0:
                matrix[i][j] = 0
    
    # Handle first row and column
    if first_row_zero:
        for j in range(cols):
            matrix[0][j] = 0
    if first_col_zero:
        for i in range(rows):
            matrix[i][0] = 0

# Template 5: Matrix Multiplication

def multiply_matrices(A, B):
    """
    Standard matrix multiplication: C[i][j] = sum(A[i][k] * B[k][j])
    """
    if not A or not A[0] or not B or not B[0]:
        return []
    
    rows_A, cols_A = len(A), len(A[0])
    rows_B, cols_B = len(B), len(B[0])
    
    if cols_A != rows_B:
        return []  # Invalid dimensions
    
    result = [[0] * cols_B for _ in range(rows_A)]
    
    for i in range(rows_A):
        for j in range(cols_B):
            for k in range(cols_A):
                result[i][j] += A[i][k] * B[k][j]
    
    return result

def multiply_sparse_matrices(A, B):
    """
    Optimized multiplication for sparse matrices
    """
    if not A or not A[0] or not B or not B[0]:
        return []
    
    rows_A, cols_A = len(A), len(A[0])
    rows_B, cols_B = len(B), len(B[0])
    result = [[0] * cols_B for _ in range(rows_A)]
    
    for i in range(rows_A):
        for k in range(cols_A):
            if A[i][k] != 0:  # Skip if zero
                for j in range(cols_B):
                    result[i][j] += A[i][k] * B[k][j]
    
    return result

# Template 6: Matrix Path DP

def min_path_sum(grid):
    """
    Find minimum path sum from top-left to bottom-right
    """
    if not grid or not grid[0]:
        return 0
    
    rows, cols = len(grid), len(grid[0])
    
    # Initialize DP table (can modify grid in-place to save space)
    dp = [[0] * cols for _ in range(rows)]
    dp[0][0] = grid[0][0]
    
    # Fill first row
    for j in range(1, cols):
        dp[0][j] = dp[0][j-1] + grid[0][j]
    
    # Fill first column
    for i in range(1, rows):
        dp[i][0] = dp[i-1][0] + grid[i][0]
    
    # Fill rest of the table
    for i in range(1, rows):
        for j in range(1, cols):
            dp[i][j] = grid[i][j] + min(dp[i-1][j], dp[i][j-1])
    
    return dp[rows-1][cols-1]

def unique_paths(m, n):
    """
    Count unique paths from top-left to bottom-right
    """
    dp = [[1] * n for _ in range(m)]
    
    for i in range(1, m):
        for j in range(1, n):
            dp[i][j] = dp[i-1][j] + dp[i][j-1]
    
    return dp[m-1][n-1]

# Essential Matrix Properties

# Diagonal Properties

  • Main Diagonal: For position (i,j), i - j = constant
    • Elements where row - col = 0: (0,0), (1,1), (2,2)…
  • Anti-Diagonal: For position (i,j), i + j = constant
    • Elements where row + col = n-1: (0,n-1), (1,n-2)…

# Coordinate System

# Standard matrix indexing: matrix[row][col]
# For matrix[i][j]:
# - i represents row (vertical position)
# - j represents column (horizontal position)

# Direction vectors for 4-directional movement
directions = [(0,1), (1,0), (0,-1), (-1,0)]  # right, down, left, up

# Direction vectors for 8-directional movement  
directions_8 = [(0,1), (1,0), (0,-1), (-1,0), (1,1), (1,-1), (-1,1), (-1,-1)]

# Boundary checking
def is_valid(row, col, rows, cols):
    return 0 <= row < rows and 0 <= col < cols

# Problems by Pattern

# Pattern-Based Problem Classification

# Pattern 1: Matrix Traversal Problems

Problem LC # Key Technique Difficulty Template Used
Spiral Matrix 54 Boundary tracking with 4 directions Medium Traversal Template
Spiral Matrix II 59 Fill matrix in spiral order Medium Traversal Template
Diagonal Traverse 498 Direction alternation with boundary handling Medium Traversal Template
Walking Robot Simulation 885 Direction vectors + obstacle checking Easy Traversal Template
Spiral Matrix III 885 Expanding spiral with bounds checking Medium Traversal Template
Matrix Cells in Distance Order 1030 Manhattan distance sorting Easy Traversal Template
Shift 2D Grid 1260 Circular array shifting in 2D Easy Traversal Template

# Pattern 2: Matrix Transformation Problems

Problem LC # Key Technique Difficulty Template Used
Rotate Image 48 Transpose + reverse rows Medium Transformation Template
Transpose Matrix 867 Swap rows and columns Easy Transformation Template
Flip Image 832 Horizontal flip + bit inversion Easy Transformation Template
Flipping an Image 832 Row reversal with bit operations Easy Transformation Template
Rotate Array 189 Array rotation using reversal Medium Transformation Template
Determine Whether Matrix Can Be Obtained by Rotation 1886 Multiple 90Β° rotations Easy Transformation Template

# Pattern 3: Matrix Search Problems

Problem LC # Key Technique Difficulty Template Used
Search a 2D Matrix 74 Binary search on flattened matrix Medium Search Template (Binary)
Search a 2D Matrix II 240 Elimination from top-right corner Medium Search Template (Elimination)
Kth Smallest Element in Sorted Matrix 378 Binary search on value range Medium Search Template (Binary)
Find K Pairs with Smallest Sums 373 Priority queue with matrix properties Medium Search Template
Shortest Distance from All Buildings 317 BFS from each building Hard Search Template
Count Negative Numbers in Sorted Matrix 1351 Binary search or elimination Easy Search Template
Find a Peak Element II 1901 Binary search on 2D peak Medium Search Template
Median in a Row-Wise Sorted Matrix - Binary search on median value Medium Search Template

# Pattern 4: Matrix Modification Problems

Problem LC # Key Technique Difficulty Template Used
Set Matrix Zeroes 73 In-place marking using first row/column Medium Modification Template
Image Smoother 661 8-directional averaging Easy Modification Template
Game of Life 289 In-place state transitions Medium Modification Template
Range Sum Query 2D - Mutable 308 Segment tree or binary indexed tree Hard Modification Template
Bomb Enemy 361 DP with obstacle handling Medium Modification Template
Shortest Distance from All Buildings 317 BFS with distance accumulation Hard Modification Template
Max Area of Island 695 DFS with visited marking Medium Modification Template
Number of Islands 200 DFS/BFS with grid modification Medium Modification Template

# Pattern 5: Matrix Multiplication & Operations

Problem LC # Key Technique Difficulty Template Used
Sparse Matrix Multiplication 311 Skip zeros optimization Medium Multiplication Template
Design Tic-Tac-Toe 348 Row/column/diagonal sum tracking Medium Operations Template
Matrix Diagonal Sum 1572 Main + anti-diagonal sum Easy Operations Template
Count Negative Numbers in Sorted Matrix 1351 Efficient counting in sorted matrix Easy Operations Template
Lucky Numbers in a Matrix 1380 Row min + column max Easy Operations Template
Maximum Side Length of Square 1292 2D prefix sum + binary search Medium Operations Template
Range Sum Query 2D Immutable 304 2D prefix sum Medium Operations Template
Minimum Falling Path Sum 931 DP with adjacent cell transitions Medium Operations Template

# Pattern 6: Matrix Path & Dynamic Programming

Problem LC # Key Technique Difficulty Template Used
Unique Paths 62 DP counting paths Medium Path DP Template
Unique Paths II 63 DP with obstacles Medium Path DP Template
Minimum Path Sum 64 DP with cost optimization Medium Path DP Template
Triangle 120 DP on triangular matrix Medium Path DP Template
Minimum Falling Path Sum 931 DP with adjacent constraints Medium Path DP Template
Cherry Pickup 741 3D DP for round trip Hard Path DP Template
Dungeon Game 174 Reverse DP from destination Hard Path DP Template
Minimum Path Sum 64 Basic grid DP Medium Path DP Template
Maximum Path Sum 124 Tree DP adapted to grid Hard Path DP Template
Path with Maximum Gold 1219 DFS with backtracking Medium Path DP Template

# Additional Matrix Problems by Difficulty

# Easy Problems (Foundation)

Problem LC # Pattern Key Learning
Reshape the Matrix 566 Transformation 1D to 2D conversion
Toeplitz Matrix 766 Pattern Recognition Diagonal property checking
Available Captures for Rook 999 Traversal Direction-based movement
Find Winner on a Tic Tac Toe Game 1275 Operations Game state evaluation
Cells with Odd Values in Matrix 1252 Modification Index-based updates
Matrix Block Sum 1314 Operations 2D range sum
Sum of All Odd Length Subarrays 1588 Operations Subarray contribution

# Medium Problems (Core Skills)

Problem LC # Pattern Key Learning
Valid Sudoku 36 Validation Set operations for uniqueness
Word Search 79 DFS/Backtracking Path exploration with backtracking
Surrounded Regions 130 DFS/BFS Boundary-based region identification
Rotate Array 189 Transformation Multiple rotation techniques
Maximal Square 221 DP 2D DP for shape optimization
Longest Increasing Path in Matrix 329 DFS + Memoization DAG longest path
Island Perimeter 463 Traversal Boundary counting
Pacific Atlantic Water Flow 417 DFS Multi-source reachability

# Hard Problems (Advanced Techniques)

Problem LC # Pattern Key Learning
Sudoku Solver 37 Backtracking Constraint satisfaction
N-Queens 51 Backtracking Complex constraint checking
The Maze III 499 Dijkstra/BFS Shortest path with direction
Robot Room Cleaner 489 DFS Unknown grid exploration
Minimum Number of Taps 1326 Greedy/DP Interval covering optimization
Cherry Pickup II 1463 3D DP Multi-agent path optimization
Largest Rectangle in Histogram 84 Stack Histogram-based optimization

# Pattern Selection Strategy

Matrix Problem Analysis Flowchart:

1. Is the problem about traversing matrix in a specific order?
   β”œβ”€β”€ YES β†’ Use Matrix Traversal Template
   β”‚   β”œβ”€β”€ Spiral order? β†’ Boundary tracking approach
   β”‚   β”œβ”€β”€ Diagonal order? β†’ Direction alternation approach
   β”‚   └── Custom order? β†’ Direction vectors approach
   └── NO β†’ Continue to 2

2. Does the problem require matrix transformation (rotate, flip, transpose)?
   β”œβ”€β”€ YES β†’ Use Matrix Transformation Template
   β”‚   β”œβ”€β”€ Rotate 90Β°? β†’ Transpose + reverse rows
   β”‚   β”œβ”€β”€ General rotation? β†’ Mathematical coordinate mapping
   β”‚   └── Transpose? β†’ Swap (i,j) with (j,i)
   └── NO β†’ Continue to 3

3. Is it a search problem in a sorted/partially sorted matrix?
   β”œβ”€β”€ YES β†’ Use Matrix Search Template
   β”‚   β”œβ”€β”€ Fully sorted (row-wise + col-wise)? β†’ Binary search as 1D array
   β”‚   β”œβ”€β”€ Row-wise and column-wise sorted? β†’ Elimination approach
   β”‚   └── Partially sorted? β†’ Modified binary search
   └── NO β†’ Continue to 4

4. Does the problem modify matrix elements based on conditions?
   β”œβ”€β”€ YES β†’ Use Matrix Modification Template
   β”‚   β”œβ”€β”€ Set zeros? β†’ Use first row/column as markers
   β”‚   β”œβ”€β”€ Smooth/average? β†’ 8-directional neighbor processing
   β”‚   └── State transitions? β†’ Two-pass or auxiliary space
   └── NO β†’ Continue to 5

5. Is it a mathematical operation between matrices?
   β”œβ”€β”€ YES β†’ Use Matrix Multiplication Template
   β”‚   β”œβ”€β”€ Standard multiplication? β†’ Triple nested loop
   β”‚   β”œβ”€β”€ Sparse matrices? β†’ Skip-zero optimization
   β”‚   └── Special operations? β†’ Customize based on operation
   └── NO β†’ Continue to 6

6. Is it about finding paths or optimizing values through the matrix?
   β”œβ”€β”€ YES β†’ Use Matrix Path DP Template
   β”‚   β”œβ”€β”€ Count paths? β†’ DP with path counting
   β”‚   β”œβ”€β”€ Min/Max path cost? β†’ DP with optimization
   β”‚   └── Complex constraints? β†’ DFS + memoization
   └── NO β†’ Use Universal Matrix Template

# Implementation Decision Tree

# Step 1: Problem Classification

  1. Read the problem carefully and identify key requirements
  2. Determine the input constraints (matrix size, value ranges)
  3. Identify the expected output (modified matrix, single value, list)
  4. Look for keywords: traverse, rotate, search, modify, multiply, path

# Step 2: Pattern Recognition

  1. Traversal indicators: β€œspiral”, β€œdiagonal”, β€œclockwise”, β€œorder”
  2. Transformation indicators: β€œrotate”, β€œtranspose”, β€œflip”, β€œmirror”
  3. Search indicators: β€œfind”, β€œsearch”, β€œlocate”, β€œsorted matrix”
  4. Modification indicators: β€œset”, β€œupdate”, β€œsmooth”, β€œchange”
  5. Math operation indicators: β€œmultiply”, β€œsum”, β€œproduct”, β€œdiagonal”
  6. Path/DP indicators: β€œpath”, β€œminimum”, β€œmaximum”, β€œcount”, β€œways”

# Step 3: Template Selection

  1. Choose the most specific template that matches the pattern
  2. Adapt the template to problem-specific requirements
  3. Consider edge cases: empty matrix, single element, rectangular vs square
  4. Optimize for constraints: in-place vs extra space, time complexity

# Code Examples & Implementations

# Advanced Example 1: Set Matrix Zeroes (LC 73)

def setZeroes(matrix):
    """
    Set entire row and column to zero if element is zero
    Time: O(m*n), Space: O(1)
    """
    if not matrix or not matrix[0]:
        return
    
    rows, cols = len(matrix), len(matrix[0])
    
    # Check if first row and column need to be zero
    first_row_zero = any(matrix[0][j] == 0 for j in range(cols))
    first_col_zero = any(matrix[i][0] == 0 for i in range(rows))
    
    # Use first row and column as markers
    for i in range(1, rows):
        for j in range(1, cols):
            if matrix[i][j] == 0:
                matrix[0][j] = 0
                matrix[i][0] = 0
    
    # Set zeros based on markers
    for i in range(1, rows):
        for j in range(1, cols):
            if matrix[0][j] == 0 or matrix[i][0] == 0:
                matrix[i][j] = 0
    
    # Handle first row and column
    if first_row_zero:
        for j in range(cols):
            matrix[0][j] = 0
    if first_col_zero:
        for i in range(rows):
            matrix[i][0] = 0

# Advanced Example 2: Search 2D Matrix II (LC 240)

def searchMatrix(matrix, target):
    """
    Search in row-wise and column-wise sorted matrix
    Time: O(m+n), Space: O(1)
    """
    if not matrix or not matrix[0]:
        return False
    
    rows, cols = len(matrix), len(matrix[0])
    row, col = 0, cols - 1  # Start from top-right
    
    while row < rows and col >= 0:
        current = matrix[row][col]
        if current == target:
            return True
        elif current > target:
            col -= 1  # Eliminate current column
        else:
            row += 1  # Eliminate current row
    
    return False

# Advanced Example 3: Image Smoother (LC 661)

def imageSmoother(M):
    """
    Smooth image by averaging 8-connected neighbors
    Time: O(m*n), Space: O(m*n)
    """
    if not M or not M[0]:
        return []
    
    rows, cols = len(M), len(M[0])
    result = [[0] * cols for _ in range(rows)]
    
    # 8-directional + current cell
    directions = [(di, dj) for di in [-1, 0, 1] for dj in [-1, 0, 1]]
    
    for i in range(rows):
        for j in range(cols):
            total = 0
            count = 0
            
            for di, dj in directions:
                ni, nj = i + di, j + dj
                if 0 <= ni < rows and 0 <= nj < cols:
                    total += M[ni][nj]
                    count += 1
            
            result[i][j] = total // count
    
    return result

# Summary & Quick Reference

# Complexity Quick Reference

Operation Time Complexity Space Complexity Notes
Matrix Access O(1) O(1) Direct indexing
Full Traversal O(m*n) O(1) Visit every element
Spiral Traversal O(m*n) O(1) Boundary tracking
Binary Search (Sorted) O(log(m*n)) O(1) Treat as 1D array
Elimination Search O(m+n) O(1) Start from corner
Matrix Rotation O(m*n) O(1) Transpose + reverse
Matrix Multiplication O(mnp) O(m*p) Standard algorithm
Sparse Multiplication O(mnk) O(m*p) k = average non-zeros per row
DP Path Problems O(m*n) O(m*n) or O(n) Can optimize space

# Template Quick Reference

Template Pattern Key Code Structure
Universal General processing for i in range(rows): for j in range(cols):
Traversal Spiral/Diagonal Boundary tracking with direction vectors
Transformation Rotate/Transpose Mathematical coordinate mapping
Search Find elements Binary search or elimination approach
Modification Update elements Two-pass or auxiliary space techniques
Multiplication Math operations Triple nested loop with optimizations
Path DP Optimization DP state transitions between adjacent cells

# Common Patterns & Tricks

# Boundary Tracking (Spiral)

top, bottom = 0, rows - 1
left, right = 0, cols - 1
while top <= bottom and left <= right:
    # Process boundaries and update them

# Direction Vectors

# 4-directional movement
directions = [(0,1), (1,0), (0,-1), (-1,0)]
# 8-directional movement  
directions = [(di,dj) for di in [-1,0,1] for dj in [-1,0,1]]

# In-Place Modifications

# Use first row/column as markers
first_row_zero = any(matrix[0][j] == 0 for j in range(cols))
first_col_zero = any(matrix[i][0] == 0 for i in range(rows))

# Coordinate Transformation

# 90Β° clockwise rotation: (i,j) β†’ (j, n-1-i)
# Transpose: (i,j) β†’ (j,i)
# Flip horizontal: (i,j) β†’ (i, n-1-j)

# Matrix to 1D Index Conversion

# Matrix[row][col] β†’ index = row * cols + col
# Index β†’ row = index // cols, col = index % cols

# Problem-Solving Steps

  1. Understand the Problem

    • Identify input format (matrix dimensions, constraints)
    • Determine output requirements (modified matrix, values, coordinates)
    • Look for special properties (sorted, sparse, square vs rectangular)
  2. Choose the Right Pattern

    • Use the decision flowchart to identify the pattern
    • Select the most specific template that matches
    • Consider time/space complexity requirements
  3. Handle Edge Cases

    • Empty matrix: if not matrix or not matrix[0]:
    • Single element: special handling for 1x1 matrices
    • Rectangular matrices: different row and column counts
  4. Optimize for Constraints

    • In-place vs extra space based on requirements
    • Choose appropriate algorithm based on matrix size
    • Consider sparse matrix optimizations when applicable

# Common Mistakes & Tips

🚫 Common Mistakes:

  • Index confusion: Mixing up matrix[row][col] vs matrix[col][row]
  • Boundary errors: Off-by-one errors in range calculations
  • Direction mistakes: Incorrect direction vector calculations
  • In-place modification: Modifying matrix while reading (use markers)
  • Edge case neglect: Not handling empty or single-element matrices
  • Coordinate transformation errors: Incorrect rotation/transpose formulas

βœ… Best Practices:

  • Always check bounds: Use 0 <= i < rows and 0 <= j < cols
  • Use meaningful names: rows, cols instead of m, n
  • Handle edge cases first: Check for empty/invalid input
  • Draw examples: Visualize transformations on small matrices
  • Use direction vectors: More readable than hardcoded movements
  • Consider space optimization: In-place modifications when possible
  • Test with different shapes: Square, rectangular, single row/column

# Interview Tips

  1. Clarify Matrix Properties

    • Ask about matrix dimensions and constraints
    • Confirm if modification in-place is allowed
    • Check if matrix is guaranteed to be non-empty
  2. Start with Brute Force

    • Implement the straightforward O(m*n) solution first
    • Then optimize based on specific problem constraints
    • Explain your approach clearly before coding
  3. Trace Through Examples

    • Use small matrices (2x2, 3x3) to verify logic
    • Walk through boundary conditions step-by-step
    • Check your algorithm with edge cases
  4. Optimize Systematically

    • Identify bottlenecks in your initial solution
    • Consider mathematical properties for optimizations
    • Discuss space-time tradeoffs with the interviewer
  5. Common Interview Patterns

    • Matrix traversal: Focus on boundary management
    • Matrix transformation: Know rotation/transpose patterns
    • Matrix search: Master binary search and elimination approaches
    • Matrix DP: Understand state transitions and space optimization
  • Arrays: Matrix is a 2D extension of array concepts
  • Dynamic Programming: Many matrix problems use DP patterns
  • Graph Algorithms: Matrix can represent graphs (adjacency matrix)
  • Binary Search: Essential for sorted matrix search problems
  • Backtracking: Used in matrix exploration problems (N-Queens, Sudoku)
  • String Processing: Matrix problems often involve pattern matching
  • Greedy Algorithms: Some matrix optimization problems use greedy approach

# Additional Resources

  • Visualization Tools: Draw.io for matrix transformation visualization
  • Practice Platforms: LeetCode matrix problems by difficulty
  • Mathematical Background: Linear algebra for advanced matrix operations
  • Algorithm Analysis: Big-O notation for matrix algorithm complexity