# Graph Algorithms

# Overview

Graph algorithms are techniques for solving problems on graph data structures consisting of vertices (nodes) and edges (connections between nodes).

# Key Properties

  • Time Complexity: O(V + E) for traversal, varies for other algorithms
  • Space Complexity: O(V) for adjacency list, O(VΒ²) for matrix
  • Core Idea: Model relationships and connections between entities
  • When to Use: Network problems, dependencies, paths, connectivity
  • Key Algorithms: BFS, DFS, Dijkstra, Union-Find, Topological Sort

# Core Characteristics

  • Directed vs Undirected: One-way or two-way edges
  • Weighted vs Unweighted: Edges with or without costs
  • Cyclic vs Acyclic: Contains cycles or not
  • Connected vs Disconnected: All nodes reachable or not

# Graph Representations

  • Adjacency List: Space O(V + E), efficient for sparse graphs
  • Adjacency Matrix: Space O(VΒ²), efficient for dense graphs
  • Edge List: Space O(E), simple but less efficient

# Problem Categories

# Category 1: Graph Traversal

  • Description: Explore all nodes using BFS or DFS
  • Examples: LC 200 (Number of Islands), LC 133 (Clone Graph)
  • Pattern: Visit all connected components

# Category 2: Shortest Path

  • Description: Find minimum distance between nodes
  • Examples: LC 743 (Network Delay), LC 787 (Cheapest Flights)
  • Pattern: Dijkstra, Bellman-Ford, Floyd-Warshall

# Category 3: Union-Find (DSU)

  • Description: Detect cycles, find connected components
  • Examples: LC 684 (Redundant Connection), LC 721 (Accounts Merge)
  • Pattern: Union by rank, path compression

# Category 4: Topological Sort

  • Description: Order nodes with dependencies
  • Examples: LC 207 (Course Schedule), LC 210 (Course Schedule II)
  • Pattern: DFS or Kahn’s algorithm (BFS)

# Category 5: Bipartite Graphs

  • Description: Check if graph can be colored with 2 colors
  • Examples: LC 785 (Is Graph Bipartite), LC 886 (Possible Bipartition)
  • Pattern: BFS/DFS with coloring

# Category 6: Minimum Spanning Tree

  • Description: Connect all nodes with minimum cost
  • Examples: LC 1135 (Connecting Cities), LC 1584 (Min Cost Connect Points)
  • Pattern: Kruskal’s or Prim’s algorithm

# Templates & Algorithms

# Template Comparison Table

Template Type Use Case Time Complexity When to Use
BFS Level-order, shortest path O(V + E) Unweighted shortest path
DFS All paths, cycle detection O(V + E) Explore all possibilities
Union-Find Connected components O(Ξ±(n)) Dynamic connectivity
Dijkstra Weighted shortest path O((V+E)logV) Non-negative weights
Topological Dependencies O(V + E) DAG ordering

# Universal Graph Template

def graph_algorithm(n, edges):
    # Build adjacency list
    graph = collections.defaultdict(list)
    for u, v in edges:
        graph[u].append(v)
        graph[v].append(u)  # For undirected
    
    # Track visited nodes
    visited = set()
    
    # Process each component
    result = 0
    for node in range(n):
        if node not in visited:
            # Process component
            process_component(node, graph, visited)
            result += 1
    
    return result

# Template 1: BFS Traversal

def bfs_template(graph, start):
    """Breadth-first search template"""
    from collections import deque
    
    visited = set([start])
    queue = deque([start])
    level = 0
    
    while queue:
        # Process level by level
        size = len(queue)
        for _ in range(size):
            node = queue.popleft()
            
            # Process node
            for neighbor in graph[node]:
                if neighbor not in visited:
                    visited.add(neighbor)
                    queue.append(neighbor)
        level += 1
    
    return level

# Template 2: DFS Traversal

def dfs_template(graph, start):
    """Depth-first search template"""
    visited = set()
    path = []
    
    def dfs(node):
        visited.add(node)
        path.append(node)
        
        for neighbor in graph[node]:
            if neighbor not in visited:
                dfs(neighbor)
        
        # Backtrack if needed
        # path.pop()
    
    dfs(start)
    return visited

# Template 3: Union-Find (DSU)

class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [0] * n
        self.count = n
    
    def find(self, x):
        """Find with path compression"""
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]
    
    def union(self, x, y):
        """Union by rank"""
        px, py = self.find(x), self.find(y)
        if px == py:
            return False
        
        if self.rank[px] < self.rank[py]:
            px, py = py, px
        self.parent[py] = px
        if self.rank[px] == self.rank[py]:
            self.rank[px] += 1
        
        self.count -= 1
        return True
    
    def connected(self, x, y):
        return self.find(x) == self.find(y)

# Template 4: Topological Sort (DFS)

def topological_sort_dfs(n, edges):
    """Topological sort using DFS"""
    graph = collections.defaultdict(list)
    for u, v in edges:
        graph[u].append(v)
    
    # 0: unvisited, 1: visiting, 2: visited
    state = [0] * n
    result = []
    
    def dfs(node):
        if state[node] == 1:  # Cycle detected
            return False
        if state[node] == 2:  # Already processed
            return True
        
        state[node] = 1  # Mark as visiting
        for neighbor in graph[node]:
            if not dfs(neighbor):
                return False
        
        state[node] = 2  # Mark as visited
        result.append(node)
        return True
    
    for i in range(n):
        if state[i] == 0:
            if not dfs(i):
                return []  # Cycle exists
    
    return result[::-1]

# Template 5: Topological Sort (BFS/Kahn’s)

def topological_sort_bfs(n, edges):
    """Kahn's algorithm for topological sort"""
    from collections import deque
    
    graph = collections.defaultdict(list)
    indegree = [0] * n
    
    for u, v in edges:
        graph[u].append(v)
        indegree[v] += 1
    
    queue = deque([i for i in range(n) if indegree[i] == 0])
    result = []
    
    while queue:
        node = queue.popleft()
        result.append(node)
        
        for neighbor in graph[node]:
            indegree[neighbor] -= 1
            if indegree[neighbor] == 0:
                queue.append(neighbor)
    
    return result if len(result) == n else []

# Template 6: Bipartite Graph Checking

Definition: A graph is bipartite if its vertices can be colored using only two colors such that no two adjacent vertices have the same color. Equivalent to checking if the graph has no odd-length cycles.

Time Complexity: O(V + E) - visit each vertex and edge once Space Complexity: O(V) - for color array and queue/recursion stack

Use Cases:

  • Graph coloring problems
  • Matching problems (assignment, scheduling)
  • Conflict detection
  • Resource allocation
  • Network flow problems

Key Properties:

  • All trees are bipartite
  • Graphs with odd cycles are NOT bipartite
  • Complete bipartite graphs K(m,n) are bipartite
  • Can be solved using BFS or DFS with 2-coloring

# Approach 1: BFS with Coloring

def is_bipartite_bfs(graph):
    """Check if graph is bipartite using BFS"""
    from collections import deque

    n = len(graph)
    colors = [-1] * n  # -1: uncolored, 0: color A, 1: color B

    # Handle disconnected components
    for start in range(n):
        if colors[start] != -1:
            continue

        # BFS coloring
        queue = deque([start])
        colors[start] = 0

        while queue:
            node = queue.popleft()

            for neighbor in graph[node]:
                if colors[neighbor] == -1:
                    # Color with opposite color
                    colors[neighbor] = 1 - colors[node]
                    queue.append(neighbor)
                elif colors[neighbor] == colors[node]:
                    # Same color conflict - not bipartite
                    return False

    return True

# Approach 2: DFS with Coloring

def is_bipartite_dfs(graph):
    """Check if graph is bipartite using DFS"""
    n = len(graph)
    colors = [-1] * n

    def dfs(node, color):
        colors[node] = color

        for neighbor in graph[node]:
            if colors[neighbor] == -1:
                # Recursively color with opposite color
                if not dfs(neighbor, 1 - color):
                    return False
            elif colors[neighbor] == colors[node]:
                # Same color conflict
                return False

        return True

    # Check each component
    for i in range(n):
        if colors[i] == -1:
            if not dfs(i, 0):
                return False

    return True

# Approach 3: Union-Find (Advanced)

def is_bipartite_union_find(n, edges):
    """Check bipartite using Union-Find for conflict detection"""

    class UnionFind:
        def __init__(self, n):
            self.parent = list(range(2 * n))  # 2n for opposite groups

        def find(self, x):
            if self.parent[x] != x:
                self.parent[x] = self.find(self.parent[x])
            return self.parent[x]

        def union(self, x, y):
            px, py = self.find(x), self.find(y)
            if px != py:
                self.parent[px] = py

        def connected(self, x, y):
            return self.find(x) == self.find(y)

    uf = UnionFind(n)

    # For each edge (u,v), union u with opposite of v, and v with opposite of u
    for u, v in edges:
        if uf.connected(u, v):  # Same group conflict
            return False

        # u should be in opposite group of v
        uf.union(u, v + n)  # u with opposite of v
        uf.union(v, u + n)  # v with opposite of u

    return True

# Grid-based Bipartite Check

def is_bipartite_grid(grid):
    """Check if grid graph is bipartite (checkerboard pattern)"""
    rows, cols = len(grid), len(grid[0])
    colors = [[-1] * cols for _ in range(rows)]
    directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]

    def bfs(start_r, start_c):
        from collections import deque
        queue = deque([(start_r, start_c)])
        colors[start_r][start_c] = 0

        while queue:
            r, c = queue.popleft()

            for dr, dc in directions:
                nr, nc = r + dr, c + dc

                if 0 <= nr < rows and 0 <= nc < cols and grid[nr][nc] == 1:
                    if colors[nr][nc] == -1:
                        colors[nr][nc] = 1 - colors[r][c]
                        queue.append((nr, nc))
                    elif colors[nr][nc] == colors[r][c]:
                        return False
        return True

    # Check each component
    for i in range(rows):
        for j in range(cols):
            if grid[i][j] == 1 and colors[i][j] == -1:
                if not bfs(i, j):
                    return False

    return True

# Enhanced Template with Partition Information

def bipartite_partition(graph):
    """
    Returns bipartite partition if exists, None otherwise
    Returns: (setA, setB) or None
    """
    n = len(graph)
    colors = [-1] * n

    def dfs(node, color):
        colors[node] = color

        for neighbor in graph[node]:
            if colors[neighbor] == -1:
                if not dfs(neighbor, 1 - color):
                    return False
            elif colors[neighbor] == colors[node]:
                return False
        return True

    # Check bipartite property
    for i in range(n):
        if colors[i] == -1:
            if not dfs(i, 0):
                return None

    # Create partition sets
    setA = [i for i in range(n) if colors[i] == 0]
    setB = [i for i in range(n) if colors[i] == 1]

    return setA, setB

LC 785: Is Graph Bipartite

def isBipartite(self, graph):
    """LC 785 - Standard bipartite check"""
    n = len(graph)
    colors = {}

    def dfs(node, color):
        colors[node] = color
        for neighbor in graph[node]:
            if neighbor in colors:
                if colors[neighbor] == colors[node]:
                    return False
            else:
                if not dfs(neighbor, 1 - color):
                    return False
        return True

    for i in range(n):
        if i not in colors:
            if not dfs(i, 0):
                return False
    return True

LC 886: Possible Bipartition

def possibleBipartition(self, n, dislikes):
    """LC 886 - Build graph from dislike relationships"""
    from collections import defaultdict

    # Build adjacency list from dislikes
    graph = defaultdict(list)
    for u, v in dislikes:
        graph[u].append(v)
        graph[v].append(u)

    colors = {}

    def dfs(node, color):
        colors[node] = color
        for neighbor in graph[node]:
            if neighbor in colors:
                if colors[neighbor] == colors[node]:
                    return False
            else:
                if not dfs(neighbor, 1 - color):
                    return False
        return True

    for i in range(1, n + 1):
        if i not in colors:
            if not dfs(i, 0):
                return False
    return True

# Applications & Variations

1. Maximum Bipartite Matching

def max_bipartite_matching(graph, n, m):
    """Find maximum matching in bipartite graph"""
    match = [-1] * m

    def dfs(u, visited):
        for v in graph[u]:
            if not visited[v]:
                visited[v] = True
                if match[v] == -1 or dfs(match[v], visited):
                    match[v] = u
                    return True
        return False

    result = 0
    for u in range(n):
        visited = [False] * m
        if dfs(u, visited):
            result += 1

    return result

2. Bipartite Graph Validation with Custom Logic

def validate_bipartite_assignment(assignments, conflicts):
    """
    Validate if assignment is bipartite given conflict pairs
    assignments: list of items to assign
    conflicts: list of (item1, item2) that cannot be in same group
    """
    from collections import defaultdict

    graph = defaultdict(list)
    for u, v in conflicts:
        graph[u].append(v)
        graph[v].append(u)

    colors = {}

    def can_color(item, color):
        if item in colors:
            return colors[item] == color

        colors[item] = color
        for conflict_item in graph[item]:
            if not can_color(conflict_item, 1 - color):
                return False
        return True

    for item in assignments:
        if item not in colors:
            if not can_color(item, 0):
                return False, {}

    # Return partition
    group_a = [item for item, color in colors.items() if color == 0]
    group_b = [item for item, color in colors.items() if color == 1]

    return True, {"Group A": group_a, "Group B": group_b}

# Performance Comparison

Approach Time Space Best Use Case
BFS O(V+E) O(V) Level-by-level processing
DFS O(V+E) O(V) Simple recursive solution
Union-Find O(Eβ‹…Ξ±(V)) O(V) Dynamic conflict detection
Grid-specific O(Rβ‹…C) O(Rβ‹…C) 2D grid problems

# Common Patterns & Tips

Pattern Recognition:

  • Graph coloring β†’ Bipartite check
  • Conflict/compatibility β†’ Build conflict graph
  • Two groups assignment β†’ Bipartite partition
  • Matching problems β†’ Bipartite matching

Implementation Tips:

  • Always handle disconnected components
  • Use 0/1 or -1/1 for colors consistently
  • Check conflicts immediately when coloring
  • Consider Union-Find for dynamic scenarios

Edge Cases:

  • Empty graph (bipartite by definition)
  • Single node (bipartite)
  • No edges (bipartite)
  • Self-loops (not bipartite if exists)
  • Disconnected components (check all)

# Problems by Pattern

# Graph Traversal Problems

Problem LC # Key Technique Difficulty
Number of Islands 200 DFS/BFS on grid Medium
Max Area of Island 695 DFS with counting Medium
Clone Graph 133 BFS/DFS with map Medium
Pacific Atlantic Water 417 Multi-source DFS Medium
Word Ladder 127 BFS shortest path Hard
Surrounded Regions 130 DFS from boundary Medium

# Shortest Path Problems

Problem LC # Key Technique Difficulty
Network Delay Time 743 Dijkstra Medium
Cheapest Flights K Stops 787 Modified Dijkstra Medium
Path with Min Effort 1631 Dijkstra on grid Medium
Bus Routes 815 BFS on routes Hard
Shortest Path Binary Matrix 1091 BFS Medium

# Union-Find Problems

Problem LC # Key Technique Difficulty
Number of Connected Components 323 Basic Union-Find Medium
Redundant Connection 684 Detect cycle Medium
Accounts Merge 721 Union-Find with map Medium
Number of Provinces 547 Union-Find or DFS Medium
Satisfiability of Equality 990 Union-Find Medium

# Topological Sort Problems

Problem LC # Key Technique Difficulty
Course Schedule 207 Cycle detection Medium
Course Schedule II 210 Topological order Medium
Alien Dictionary 269 Build graph + sort Hard
Minimum Height Trees 310 Leaf removal Medium
Parallel Courses 1136 Level-wise BFS Medium

# Bipartite Problems

Problem LC # Key Technique Difficulty
Is Graph Bipartite 785 BFS coloring Medium
Possible Bipartition 886 DFS coloring Medium

# Advanced Graph Problems

Problem LC # Key Technique Difficulty
Critical Connections 1192 Tarjan’s algorithm Hard
Find Eventual Safe States 802 Cycle detection Medium
Reconstruct Itinerary 332 Hierholzer’s algorithm Hard
Minimum Spanning Tree 1135 Kruskal/Prim Medium

# 1-1-1) Number of Islands

  • LC 200
// java
void dfs(char[][] grid, int r, int c){
    int nr = grid.length;
    int nc = grid[0].length;

    if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
        return;
    }

    grid[r][c] = '0';

    /** NOTE here !!!*/
    dfs_1(grid, r - 1, c);
    dfs_1(grid, r + 1, c);
    dfs_1(grid, r, c - 1);
    dfs_1(grid, r, c + 1);
}

public int numIslands_1(char[][] grid) {
    if (grid == null || grid.length == 0) {
        return 0;
    }

    int nr = grid.length;
    int nc = grid[0].length;
    int num_islands = 0;

    for (int r = 0; r < nr; ++r) {
        for (int c = 0; c < nc; ++c) {
            if (grid[r][c] == '1') {
                ++num_islands;
                dfs_1(grid, r, c);
            }
        }
    }

    return num_islands;
}

# 1-1-2) Max Area of Island

  • LC 695
// java
int[][] grid;
boolean[][] seen;

public int area(int r, int c) {
    if (r < 0 || r >= grid.length || c < 0 || c >= grid[0].length ||
            seen[r][c] || grid[r][c] == 0)
        return 0;
    seen[r][c] = true;

    /** NOTE !!!*/
    return (1 + area(r+1, c) + area(r-1, c)
            + area(r, c-1) + area(r, c+1));
}

public int maxAreaOfIsland_1(int[][] grid) {
    this.grid = grid;
    seen = new boolean[grid.length][grid[0].length];
    int ans = 0;
    for (int r = 0; r < grid.length; r++) {
        for (int c = 0; c < grid[0].length; c++) {
            ans = Math.max(ans, area(r, c));
        }
    }
    return ans;
}

# 2) LC Example

# 2-1) Closest Leaf in a Binary Tree

# 742 Closest Leaf in a Binary Tree
import collections
class Solution:
    # search via DFS
    def findClosestLeaf(self, root, k):
        self.start = None
        self.buildGraph(root, None, k)
        q, visited = [root], set()
        #q, visited = [self.start], set() # need to validate this
        self.graph = collections.defaultdict(list)
        while q:
            for i in range(len(q)):
                cur = q.pop(0) # this is dfs
                # add cur to visited, NOT to visit this node again
                visited.add(cur)
                ### NOTICE HERE 
                # if not cur.left and not cur.right: means this is the leaf (HAS NO ANY left/right node) of the tree
                # so the first value of this is what we want, just return cur.val as answer directly
                if not cur.left and not cur.right:
                    # return the answer
                    return cur.val
                # if not find the leaf, then go through all neighbors of current node, and search again
                for node in self.graph:
                    if node not in visited: # need to check if "if node not in visited" or "if node in visited"
                        q.append(node)

    # build graph via DFS
    # node : current node
    # parent : parent of current node
    def buildGraph(self, node, parent, k):
        if not node:
            return
        # if node.val == k, THEN GET THE start point FROM current "node",
        # then build graph based on above
        if node.val == k:
            self.start = node
        if parent:
            self.graph[node].append(parent)
            self.graph[parent].append(node)
        self.buildGraph(node.left, node, k)
        self.buildGraph(node.right, node, k)

# 2-2) Number of Connected Components in an Undirected Graph

# LC 323 Number of Connected Components in an Undirected Graph
# V0
# IDEA : DFS
class Solution:
    def countComponents(self, n, edges):
        def helper(u):
            if u in pair:
                for v in pair[u]:
                    if v not in visited:
                        visited.add(v)
                        helper(v)
            
        pair = collections.defaultdict(set)
        for u,v in edges:
            pair[u].add(v)
            pair[v].add(u)
        count = 0
        visited = set()
        for i in range(n):
            if i not in visited:
                helper(i)
                count+=1
        return count

# 2-3) Clone Graph

# LC 133. Clone Graph

# V0
# IDEA : BFS
class Solution(object):
    def cloneGraph(self, node):
        if not node:
            return
        q = [node]
        """
        NOTE !!! : we init res as Node(node.val, [])
          -> since Node has structure as below :

          class Node:
            def __init__(self, val = 0, neighbors = None):
                self.val = val
                self.neighbors = neighbors if neighbors is not None else []
        """
        res = Node(node.val, [])
        """
        NOTE !!! : we use dict as visited,
                   and we use node as visited dict key 
        """
        visited = dict()
        visited[node] = res
        while q:
            #t = q.pop(0) # this works as well
            t = q.pop(-1)
            if not t:
                continue
            for n in t.neighbors:
                if n not in visited:
                    """
                    NOTE !!! : we need to 
                         -> use n as visited key
                         -> use Node(n.val, []) as visited value
                    """
                    visited[n] = Node(n.val, [])
                    q.append(n)
                """
                NOTE !!! 
                    -> we need to append visited[n] to visited[t].neighbors
                """
                visited[t].neighbors.append(visited[n])
        return res

# V0
# IDEA : DFS
# NOTE :
#  -> 1) we init node via : node_copy = Node(node.val, [])
#  -> 2) we copy graph via dict
class Solution(object):
    def cloneGraph(self, node):
        """
        :type node: Node
        :rtype: Node
        """
        node_copy = self.dfs(node, dict())
        return node_copy
    
    def dfs(self, node, hashd):
        if not node: return None
        if node in hashd: return hashd[node]
        node_copy = Node(node.val, [])
        hashd[node] = node_copy
        for n in node.neighbors:
            n_copy = self.dfs(n, hashd)
            if n_copy:
                node_copy.neighbors.append(n_copy)
        return node_copy

# 2-4) Bus Routes

# LC 815. Bus Routes
# V0
# IDEA : BFS + GRAPH
class Solution(object):
    def numBusesToDestination(self, routes, S, T):
        # edge case:
        if S == T:
            return 0
        to_routes = collections.defaultdict(set)
        for i, route in enumerate(routes):
            for j in route:
                to_routes[j].add(i)
        bfs = [(S, 0)]
        seen = set([S])
        for stop, bus in bfs:
            if stop == T:
                return bus
            for i in to_routes[stop]:
                for j in routes[i]:
                    if j not in seen:
                        bfs.append((j, bus + 1))
                        seen.add(j)
                routes[i] = []  # seen route
        return -1

# 2-5) Course Schedule

// java
// V0
// IDEA : DFS (fix by gpt) (NOTE : there is also TOPOLOGICAL SORT solution)
// NOTE !!! instead of maintain status (0,1,2), below video offers a simpler approach
//      -> e.g. use a set, recording the current visiting course, if ANY duplicated (already in set) course being met,
//      -> means "cyclic", so return false directly
// https://www.youtube.com/watch?v=EgI5nU9etnU
public boolean canFinish(int numCourses, int[][] prerequisites) {
    // Initialize adjacency list for storing prerequisites
    /**
     *  NOTE !!!
     *
     *  init prerequisites map
     *  {course : [prerequisites_array]}
     *  below init map with null array as first step
     */
    Map<Integer, List<Integer>> preMap = new HashMap<>();
    for (int i = 0; i < numCourses; i++) {
        preMap.put(i, new ArrayList<>());
    }

    // Populate the adjacency list with prerequisites
    /**
     *  NOTE !!!
     *
     *  update prerequisites map
     *  {course : [prerequisites_array]}
     *  so we go through prerequisites,
     *  then append each course's prerequisites to preMap
     */
    for (int[] pair : prerequisites) {
        int crs = pair[0];
        int pre = pair[1];
        preMap.get(crs).add(pre);
    }

    /** NOTE !!!
     *
     *  init below set for checking if there is "cyclic" case
     */
    // Set for tracking courses during the current DFS path
    Set<Integer> visiting = new HashSet<>();

    // Recursive DFS function
    for (int c = 0; c < numCourses; c++) {
        if (!dfs(c, preMap, visiting)) {
            return false;
        }
    }
    return true;
}

private boolean dfs(int crs, Map<Integer, List<Integer>> preMap, Set<Integer> visiting) {
    /** NOTE !!!
     *
     *  if visiting contains current course,
     *  means there is a "cyclic",
     *  (e.g. : needs to take course a, then can take course b, and needs to take course b, then can take course a)
     *  so return false directly
     */
    if (visiting.contains(crs)) {
        return false;
    }
    /**
     *  NOTE !!!
     *
     *  if such course has NO preRequisite,
     *  return true directly
     */
    if (preMap.get(crs).isEmpty()) {
        return true;
    }

    /**
     *  NOTE !!!
     *
     *  add current course to set (Set<Integer> visiting)
     */
    visiting.add(crs);
    for (int pre : preMap.get(crs)) {
        if (!dfs(pre, preMap, visiting)) {
            return false;
        }
    }
    /**
     *  NOTE !!!
     *
     *  remove current course from set,
     *  since already finish visiting
     *
     *  e.g. undo changes
     */
    visiting.remove(crs);
    preMap.get(crs).clear(); // Clear prerequisites as the course is confirmed to be processed
    return true;
}

# Decision Framework

# Pattern Selection Strategy

Graph Algorithm Selection Flowchart:

1. What is the problem asking for?
   β”œβ”€β”€ Find shortest path β†’ Continue to 2
   β”œβ”€β”€ Check connectivity β†’ Use Union-Find or DFS/BFS
   β”œβ”€β”€ Order with dependencies β†’ Use Topological Sort
   β”œβ”€β”€ Detect cycles β†’ Use DFS with states or Union-Find
   └── Traverse all nodes β†’ Use BFS or DFS

2. For shortest path problems:
   β”œβ”€β”€ Unweighted graph β†’ Use BFS
   β”œβ”€β”€ Non-negative weights β†’ Use Dijkstra
   β”œβ”€β”€ Negative weights β†’ Use Bellman-Ford
   └── All pairs β†’ Use Floyd-Warshall

3. For connectivity problems:
   β”œβ”€β”€ Static graph β†’ Use DFS/BFS once
   β”œβ”€β”€ Dynamic connections β†’ Use Union-Find
   └── Count components β†’ Use either approach

4. For traversal problems:
   β”œβ”€β”€ Level-by-level β†’ Use BFS
   β”œβ”€β”€ Path finding β†’ Use DFS with backtracking
   └── State space search β†’ Use BFS for optimal

5. Is the graph special?
   β”œβ”€β”€ Tree β†’ Simpler DFS/BFS
   β”œβ”€β”€ DAG β†’ Topological sort possible
   β”œβ”€β”€ Bipartite β†’ Two-coloring
   └── Grid β†’ Treat as implicit graph

# Algorithm Selection Guide

Problem Type Best Algorithm Time When to Use
Single-source shortest (unweighted) BFS O(V+E) Simple shortest path
Single-source shortest (weighted) Dijkstra O((V+E)logV) Non-negative weights
All-pairs shortest Floyd-Warshall O(VΒ³) Dense graphs
Cycle detection DFS O(V+E) Directed graphs
Connected components Union-Find O(Ξ±(n)) Dynamic connectivity
Topological order Kahn’s/DFS O(V+E) Task scheduling
Minimum spanning tree Kruskal/Prim O(ElogE) Network design

# Summary & Quick Reference

# Complexity Quick Reference

Algorithm Time Complexity Space Complexity Notes
BFS/DFS O(V + E) O(V) Standard traversal
Dijkstra O((V+E)logV) O(V) With binary heap
Bellman-Ford O(VE) O(V) Handles negative weights
Floyd-Warshall O(VΒ³) O(VΒ²) All pairs
Union-Find O(Ξ±(n)) O(V) Near constant
Topological Sort O(V + E) O(V) Linear time

# Graph Building Patterns

# Adjacency List

# For edges list
graph = defaultdict(list)
for u, v in edges:
    graph[u].append(v)
    graph[v].append(u)  # Undirected

# For weighted edges
graph = defaultdict(list)
for u, v, w in edges:
    graph[u].append((v, w))

# Adjacency Matrix

# For unweighted
graph = [[0] * n for _ in range(n)]
for u, v in edges:
    graph[u][v] = 1
    graph[v][u] = 1  # Undirected

# For weighted
graph = [[float('inf')] * n for _ in range(n)]
for u, v, w in edges:
    graph[u][v] = w

# Common Patterns & Tricks

# Visited Tracking

# Set for simple visited
visited = set()

# Array for state tracking
# 0: unvisited, 1: visiting, 2: visited
state = [0] * n

# Dictionary for path reconstruction
parent = {}

# Grid as Graph

# 4-directional movement
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]

# 8-directional movement
directions = [(0, 1), (1, 0), (0, -1), (-1, 0),
              (1, 1), (1, -1), (-1, 1), (-1, -1)]

# Check bounds
def is_valid(r, c, rows, cols):
    return 0 <= r < rows and 0 <= c < cols

# Cycle Detection Patterns

# Directed graph - DFS with states
def has_cycle_directed(graph):
    # 0: unvisited, 1: visiting, 2: visited
    state = [0] * n
    
    def dfs(node):
        if state[node] == 1:  # Back edge
            return True
        if state[node] == 2:
            return False
        
        state[node] = 1
        for neighbor in graph[node]:
            if dfs(neighbor):
                return True
        state[node] = 2
        return False

# Undirected graph - Union-Find
def has_cycle_undirected(edges):
    uf = UnionFind(n)
    for u, v in edges:
        if not uf.union(u, v):
            return True  # Already connected
    return False

# Problem-Solving Steps

  1. Identify graph type: Directed/undirected, weighted/unweighted
  2. Choose representation: Adjacency list vs matrix
  3. Select algorithm: Based on problem requirements
  4. Handle edge cases: Empty graph, disconnected components
  5. Track state properly: Visited nodes, paths, distances
  6. Optimize if needed: Space or time improvements

# Common Mistakes & Tips

🚫 Common Mistakes:

  • Not handling disconnected components
  • Incorrect visited state management
  • Missing cycle detection in recursive DFS
  • Wrong graph representation choice
  • Not considering edge cases (self-loops, multiple edges)

βœ… Best Practices:

  • Use adjacency list for sparse graphs
  • Clear visited tracking strategy
  • Handle both directed and undirected cases
  • Consider using Union-Find for dynamic connectivity
  • Test with disconnected components

# Interview Tips

  1. Clarify graph properties: Directed? Weighted? Connected?
  2. Draw small examples: Visualize the problem
  3. Choose right representation: List vs matrix
  4. State complexities: Time and space upfront
  5. Handle edge cases: Empty, single node, cycles
  6. Optimize incrementally: Start simple, then improve
  • Trees: Special case of graphs (connected, acyclic)
  • Dynamic Programming: DP on graphs (paths, trees)
  • Greedy Algorithms: MST algorithms
  • Heap/Priority Queue: Used in Dijkstra, Prim’s
  • Recursion/Backtracking: DFS implementation

# 2-6) Find Eventual Safe States

// java
// LC 802

// V1-0
// IDEA : DFS
// KEY : check if there is a "cycle" on a node
// https://www.youtube.com/watch?v=v5Ni_3bHjzk
// https://zxi.mytechroad.com/blog/graph/leetcode-802-find-eventual-safe-states/
public List<Integer> eventualSafeNodes(int[][] graph) {
    // init
    int n = graph.length;
    State[] states = new State[n];
    for (int i = 0; i < n; i++) {
        states[i] = State.UNKNOWN;
    }

    List<Integer> result = new ArrayList<>();
    for (int i = 0; i < n; i++) {
        // if node is with SAFE state, add to result
        if (dfs(graph, i, states) == State.SAFE) {
            result.add(i);
        }
    }
    return result;
}

private enum State {
    UNKNOWN, VISITING, SAFE, UNSAFE
}

private State dfs(int[][] graph, int node, State[] states) {
    /**
     * NOTE !!!
     *  if a node with "VISITING" state,
     *  but is visited again (within the other iteration)
     *  -> there must be a cycle
     *  -> this node is UNSAFE
     */
    if (states[node] == State.VISITING) {
        return states[node] = State.UNSAFE;
    }
    /**
     * NOTE !!!
     *  if a node is not with "UNKNOWN" state,
     *  -> update its state
     */
    if (states[node] != State.UNKNOWN) {
        return states[node];
    }

    /**
     * NOTE !!!
     *  update node state as VISITING
     */
    states[node] = State.VISITING;
    for (int next : graph[node]) {
        /**
         * NOTE !!!
         *   for every sub node, if any one them
         *   has UNSAFE state,
         *   -> set and return node state as UNSAFE directly
         */
        if (dfs(graph, next, states) == State.UNSAFE) {
            return states[node] = State.UNSAFE;
        }
    }

    /**
     * NOTE !!!
     *   if can pass all above checks
     *   -> this is node has SAFE state
     */
    return states[node] = State.SAFE;
}